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PREFACE 
Many workers in the biological sciences-physiologists, 

psychologists, sociologists-are interested in cybernetics and 
would like to apply its methods and techniques to their own spe
ciality. Many have, however, been prevented from taking up the 
subject by an impression that its use must be preceded by a long 
study of electronics and advanced pure mathematics; for they 
have formed the impression that cybernetics and these subjects 
are inseparable. 

The author is convinced, however, that this impression is false. 
The basic ideas of cybernetics can be treated without reference to 
electronics, and they are fundamentally simple; so although 
advanced techniques may be necessary for advanced applications, 
a great deal can be done, especially in the biological sciences, by 
the use of quite simple techniques, provided they are used with a 
clear and deep understanding of the principles involved. It is the 
author's belief that if the subject is founded in the common-place 
and well understood, and is then built up carefully, step by step, 
there is no reason why the worker with only elementary mathe
matical knowledge should not achieve a complete understanding 
of its basic principles. With such an understanding he will then be 
able to see exactly what further techniques he will have to learn if 
he is to proceed further; and, what is particularly useful, he will be 
able to see what techniques he can safely ignore as being irrele
vant to his purpose. 

The book is intended to provide such an introduction. It starts 
from common-place and well-understood concepts, and proceeds, 
step by step, to show how these concepts can be made exact, and 
how they can be developed until they lead into such subjects as 
feedback, stability, regulation, ultrastability, information, coding, 
noise, and other cybernetic topics. Throughout the book no 
knowledge of mathematics is required beyond elementary alge
bra; in particular, the arguments nowhere depend on the calculus 
(the few references to it can be ignored without harm, for they are 
intended only to show how the calculus joins on to the subjects 
discussed, if it should be used). The illustrations and examples are 
mostly taken from the biological, rather than the physical, sci
ences. Its overlap with Design for a Brain is small, so that the two 
books are almost independent. They are, however, intimately 
related, and are best treated as complementary; each will help to 
illuminate the other. 
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It is divided into three parts. 
Part I deals with the principles of Mechanism, treating such 

matters as its representation by a transformation, what is meant by 
"stability", what is meant by "feedback", the various forms of 
independence that can exist within a mechanism, and how mech
anisms can be coupled. It introduces the principles that must be 
followed when the system is so large and complex (e.g. brain or 
society) that it can be treated only statistically. It introduces also 
the case when the system is such that not all of it is accessible to 
direct observation-the so-called Black Box theory. 

Part II uses the methods developed in Part I to study what is 
meant by "information", and how it is coded when it passes 
through a mechanism. It applies these methods to various prob
lems in biology and tries to show something of the wealth of pos
sible applications. It leads into Shannon's theory; so after reading 
this Part the reader will be able to proceed without difficulty to the 
study of Shannon's own work. 

Part III deals with mechanism and information as they are used 
in biological systems for regulation and control, both in the inborn 
systems studied in physiology and in the acquired systems studied 
in psychology. It shows how hierarchies of such regulators and 
controllers can be built, and how an amplification of regulation is 
thereby made possible. It gives a new and altogether simpler 
account of the principle ofultrastability. It lays the foundation for 
a general theory of complex regulating systems, developing fur
ther the ideas of Design for a Brain. Thus, on the one hand it pro
vides an explanation of the outstanding powers of regulation 
possessed by the brain, and on the other hand it provides the prin
ciples by which a designer may build machines of like power. 

Though the book is intended to be an easy introduction, it is not 
intended to be merely a chat about cybernetics-it is written for 
those who want to work themselves into it, for those who want to 
achieve an actual working mastery of the subject. It therefore con
tains abundant easy exercises, carefully graded, with hints and 
explanatory answers, so that the reader, as he progresses, can test his 
grasp of what he has read, and can exercise his new intellectual mus
cles. A few exercises that need a special technique have been marked 
thus: *Ex. Their omission will not affect the reader's progress. 

For convenience of reference, the matter has been divided into 
sections; all references are to the section, and as these numbers are 
shown at the top of every page, finding a section is as simple and 
direct as finding a page. The section is shown thus: S.9/14-indi
cating the fourteenth section in Chapter 9. Figures, Tables, and 
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Exercises have been numbered within their own sections; thus 
Fig. 9/14/2 is the second figure in S.9/14. A simple reference, e.g. 
Ex. 4, is used for reference within the same section. Whenever a 
word is formally defined it is printed in bold-faced type. 

I would like to express my indebtedness to Michael B. Sporn, 
who checked all the Answers. T would also like to take this oppor
tunity to express my deep gratitude to the Governors of Barn wood 
House and to Dr. G. W. T. H. Fleming for the generous support that 
made these researches possible. Though the book covers many top
ics, these are but means; the end has been throughout to make clear 
what principles must be followed when one attempts to restore nor
mal function to a sick organism that is, as a human patient, offear
ful complexity. It is my faith that the new understanding may lead 
to new and effective treatments, for the need is great. 

Barnwood House 
Gloucester 
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Chapter 1 

WHAT IS NEW 

111. Cybernetics was defined by Wiener as "the science of control 
and communication, in the animal and the machine"-in a word, 
as the art of steermanship, and it is to this aspect that the book will 
be addressed. Co-ordination, regulation and control will be its 
themes, for these are of the greatest biological and practical inter
est. 

We must, therefore, make a study of mechanism; but some 
introduction is advisable, for cybernetics treats the subject from a 
new, and therefore unusual, angle. Without introduction, Chapter 
2 might well seem to be seriously at fault. The new point of view 
should be clearly understood, for any unconscious vacillation 
between the old and the new is apt to lead to confusion. 

112. The peculiarities of cybernetics. Many a book has borne the 
title "Theory of Machines", but it usually contains information 
about mechanical things, about levers and cogs. Cybernetics, too, 
is a "theory of machines", but it treats, not things but ways of 
behaving. It does not ask "what is this thing?" but "what does it 
do?" Thus it is very interested in such a statement as "this variable 
is undergoing a simple harmonic oscillation", and is much less 
concerned with whether the variable is the position of a point on 
a wheel, or a potential in an electric circuit. It is thus essentially 
functional and behaviouristic. 

Cybernetics started by being closely associated in many ways 
with physics, but it depends in no essential way on the laws of 
physics or on the properties of matter. Cybernetics deals with all 
forms of behaviour in so far as they are regular, or determinate, or 
reproducible. The materiality is irrelevant, and so is the holding or 
not of the ordinary laws of physics. (The example given in S.4/15 
will make this statement clear.) The truths of cybernetics are not 
conditional on their being derived from some other branch of sci
ence. Cybernetics has its own foundations. It is partly the aim of 
this book to display them clearly. 
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113. Cybernetics stands to the real machine-electronic, mechani
cal, neural, or economic-much as geometry stands to a real object 
in our terrestrial space. There was a time when "geometry" meant 
such relationships as could be demonstrated on three-dimensional 
objects or in two-dimensional diagrams. The forms provided by 
the earth-animal, vegetable, and mineral-were larger in number 
and richer in properties than could be provided by elementary 
geometry. In those days a form which was suggested by geometry 
but which could not be demonstrated in ordinary space was suspect 
or inacceptable. Ordinary space dominated geometry. 

Today the position is quite different. Geometry exists in its own 
right, and by its own strength. It can now treat accurately and 
coherently a range of forms and spaces that far exceeds anything 
that terrestrial space can provide. Today it is geometry that con
tains the terrestrial forms, and not vice versa, for the terrestrial 
forms are merely special cases in an all-embracing geometry. 

The gain achieved by geometry's development hardly needs to 
be pointed out. Geometry now acts as a framework on which all 
terrestrial forms can find their natural place, with the relations 
between the various forms readily appreciable. With this increased 
understanding goes a correspondingly increased power of control. 

Cybernetics is similar in its relation to the actual machine. It 
takes as its subject-matter the domain of"all possible machines", 
and is only secondarily interested if informed that some of them 
have not yet been made, either by Man or by Nature. What cyber
netics offers is the framework on which all individual machines 
may be ordered, related and understood. 

114. Cybernetics, then, is indifferent to the criticism that some of 
the machines it considers are not represented among the machines 
found among us. In this it follows the path already followed with 
obvious success by mathematical physics. This science has long 
given prominence to the study of systems that are well known to 
be non-existent-springs without mass, particles that have mass 
but no volume, gases that behave perfectly, and so on. To say that 
these entities do not exist is true; but their non-existence does not 
mean that mathematical physics is mere fantasy; nor does it make 
the physicist throw away his treatise on the Theory of the Mass
less Spring, for this theory is invaluable to him in his practical 
work. The fact is that the massless spring, though it has no physi
cal representation, has certain properties that make it of the high
est importance to him if he is to understand a system even as 
simple as a watch. 
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The biologist knows and uses the same principle when he gives 
to Amphioxus, or to some extinct form, a detailed study quite out Of 
proportion to its present-day ecological or economic importance. 

In the same way, cybernetics marks out certain types of mech
anism (S.3/3) as being of particular importance in the general the
ory; and it does this with no regard for whether terrestrial 
machines happen to make this form common. Only after the study 
has surveyed adequately the possible relations between machine 
and machine does it turn to consider the forms actually found in 
some particular branch of science. 

115. In keeping with this method, which works primarily with the 
comprehensive and general, cybernetics typically treats any 
given, particular, machine by asking not "what individual act will 
it produce here and now?" but "what are all the possible behav
iours that it can produce?" 

It is in this way that information theory comes to play an essen
tial part in the subject; for information theory is characterised 
essentially by its dealing always with a set of possibilities; both its 
primary data and its final statements are almost always about the 
set as such, and not about some individual element in the set. 

This new point ofview leads to the consideration of new types 
of problem. The older point of view saw, say, an ovum grow into 
a rabbit and asked "why does it do this"-why does it not just stay 
an ovum?" The attempts to answer this question led to the study 
of energetics and to the discovery of many reasons why the ovum 
should change-it can oxidise its fat, and fat provides free energy; 
it has phosphorylating enzymes, and can pass its metabolises 
around a Krebs' cycle; and so on. In these studies the concept of 
energy was fundamental. 

Quite different, though equally valid, is the point of view of 
cybernetics. It takes for granted that the ovum has abundant free 
energy, and that it is so delicately poised metabolically as to be, in 
a sense, explosive. Growth of some form there will be; cybernetics 
asks "why should the changes be to the rabbit-form, and not to a 
dog-form, a fish-form, or even to a teratoma-form?" Cybernetics 
envisages a set of possibilities much wider than the actual, and then 
asks why the particular case should conform to its usual particular 
restriction. In this discussion, questions of energy play almost no 
part-the energy is simply taken for granted. Even whether the sys
tem is closed to energy or open is often irrelevant; what is important 
is the extent to which the system is subject to determining and con
trolling factors. So no information or signal or determining factor 
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may pass from part to part without its being recorded as a signifi
cant event. Cybernetics might, in fact, be defined as the study of sys
tems that are open to energy but closed to information and 
control-systems that are "information-tight" (S.9/19.). 

116. The uses of cybernetics. After this bird's-eye view of cyber
netics we can turn to consider some of the ways in which it prom
ises to be of assistance. I shall confine my attention to the 
applications that promise most in the biological sciences. The 
review can only be brief and very general. Many applications 
have already been made and are too well known to need descrip
tion here; more will doubtless be developed in the future. There 
are, however, two peculiar scientific virtues of cybernetics that 
are worth explicit mention. 

One is that it offers a single vocabulary and a single set of con
cepts suitable for representing the most diverse types of system. 
Until recently, any attempt to relate the many facts known about, 
say, servo-mechanisms to what was known about the cerebellum 
was made unnecessarily difficult by the fact that the properties of 
servo-mechanisms were described in words redolent ofthe auto
matic pilot, or the radio set, or the hydraulic brake, while those of 
the cerebellum were described in words redolent of the dissecting 
room and the bedside-aspects that are irrelevant to the similari
ties between a servo-mechanism and a cerebellar reflex. Cyber
netics offers one set of concepts that, by having exact 
correspondences with each branch of science, can thereby bring 
them into exact relation with one other. 

It has been found repeatedly in science that the discovery that 
two branches are related leads to each branch helping in the devel
opment of the other. (Compare S.6/8.) The result is often a mark
edly accelerated growth of both. The infinitesimal calculus and 
astronomy, the virus and the protein molecule, the chromosomes 
and heredity are examples that come to mind. Neither, of course, 
can give proofs about the laws of the other, but each can give sug
gestions that may be of the greatest assistance and fruitfulness. 
The subject is returned to in S.6/8. Here I need only mention the 
fact that cybernetics is likely to reveal a great number of interest
ing and suggestive parallelisms between machine and brain and 
society. And it can provide the common language by which dis
coveries in one branch can readily be made use of in the others. 

117. The complex system. The second peculiar virtue of cybernet
ics is that it offers a method for the scientific treatment of the sys-
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tern in which complexity is outstanding and too important to be 
ignored Such systems are, as we well know, only too common in 
the biological world! 

In the simpler systems, the methods of cybernetics sometimes 
show no obvious advantage over those that have long been 
known. It is chiefly when the systems become complex that the 
new methods reveal their power. 

Science stands today on something of a divide. For two centuries 
it has been exploring systems that are either intrinsically simple or 
that are capable of being analysed into simple components. The fact 
that such a dogma as "vary the factors one at a time" could be 
accepted for a century, shows that scientists were largely concerned 
in investigating such systems as allowed this method; for this 
method is often fundamentally impossible in the complex systems. 
Not until Sir Donald Fisher's work in the '20s, with experiments 
conducted on agricultural soils, did it become clearly recognised that 
there are complex systems that just do not allow the varying of only 
one factor at a time-they are so dynamic and interconnected that 
the alteration of one factor immediately acts as cause to evoke alter
ations in others, perhaps in a great many others. Until recently, sci
ence tended to evade the study of such systems, focusing its attention 
on those that were simple and, especially, reducible (S.4/14). 

In the study of some systems, however, the complexity could 
not be wholly evaded. The cerebral cortex of the free-living 
organism, the ant-hill as a functioning society, and the human 
economic system were outstanding both in their practical impor
tance and in their intractability by the older methods. So today we 
see psychoses untreated, societies declining, and economic sys
tems faltering, the scientist being able to do little more than to 
appreciate the full complexity of the subject he is studying. But 
science today is also taking the first steps towards studying "com
plexity" as a subject in its own right. 

Prominent among the methods for dealing with complexity is 
cybernetics. It rejects the vaguely intuitive ideas that we pick up 
from handling such simple machines as the alarm clock and the 
bicycle, and sets to work to build up a rigorous discipline of the sub
ject. For a time (as the first few chapters of this book will show) it 
seems rather to deal with truisms and platitudes, but this is merely 
because the foundations are built to be broad and strong. They are 
built so that cybernetics can be developed vigorously, without t e 
primary vagueness that has infected most past attempts to grapple 
with, in particular, the complexities of the brain in action. 

Cybernetics offers the hope of providing effective methods for 
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the study, and control, of systems that are intrinsically extremely 
complex. It will do this by first marking out what is achievable 
(for probably many of the investigations of the past attempted the 
impossible), and then providing generalised strategies, of demon
strable value, that can be used uniformly in a variety of special 
cases. In this way it offers the hope of providing the essential 
methods by which to attack the ills-psychological, social, eco
nomic-which at present are defeating us by their intrinsic com
plexity. Part III of this book does not pretend to offer such 
methods perfected, but it attempts to offer a foundation on which 
such methods can be constructed, and a start in the right direction. 
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PART ONE 

MECHANISM 

The properties commonly ascribed to any object 
are, in last analysis, names for its behavior. 

(Herrick) 





Chapter 2 

CHANGE 

2/1. The most fundamental concept in cybernetics is that of"dif
ference", either that two things are recognisably different or that 
one thing has changed with time. Its range of application need not 
be described now, for the subsequent chapters will illustrate the 
range abundantly. All the changes that may occur with time are 
naturally included, for when plants grow and planets age and 
machines move some change from one state to another is implicit. 
So our first task will be to develop this concept of "change", not 
only making it more precise but making it richer, converting it to 
a form that experience has shown to be necessary if significant 
developments are to be made. 

Often a change occurs continuously, that is, by infinitesimal 
steps, as when the earth moves through space, or a sunbather's 
skin darkens under exposure. The consideration of steps that are 
infinitesimal, however, raises a number of purely mathematical 
difficulties, so we shall avoid their consideration entirely.lnstead, 
we shall assume in all cases that the changes occur by finite steps 
in time and that any difference is also finite. We shall assume that 
the change occurs by a measurable jump, as the money in a bank 
account changes by at least a penny. Though this supposition may 
seem artificial in a world in which continuity is common, it has 
great advantages in an Introduction and is not as artificial as it 
seems. When the differences are finite, all the important ques
tions, as we shall see later, can be decided by simple counting, so 
that it is easy to be quite sure whether we are right or not. Were 
we to consider continuous changes we would often have to com
pare infinitesimal against infinitesimal, or to consider what we 
would have after adding together an infinite number of infinitesi
mals-questions by no means easy to answer. 

As a simple trick, the discrete can often be carried over into the 
continuous, in a way suitable for practical purposes, by making a 
graph of the discrete, with the values shown as separate points. It 
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is then easy to see the form that the changes will take if the points 
were to become infinitely numerous and close together. 

In fact, however, by keeping the discussion to the case of the 
finite difference we lose nothing. For having established with cer
tainty what happens when the differences have a particular size 
we can consider the case when they are rather smaller. When this 
case is known with certainty we can consider what happens when 
they are smaller still. We can progress in this way, each step being 
well established, until we perceive the trend; then we can say what 
is the limit as the difference tends to zero. This, in fact, is the 
method that the mathematician always does use if he wants to be 
really sure of what happens when the changes are continuous. 

Thus, consideration of the case in which all differences are 
finite loses nothing, it gives a clear and simple foundation; and it 
can always be converted to the continuous form if that is desired. 

The subject is taken up again in S.3/3. 

2/2. Next, a few words that will have to be used repeatedly. Con
sider the simple example in which, under the influence of sun
shine, pale skin changes to dark skin. Something, the pale skin, is 
acted on by a factor, the sunshine, and is changed to dark skin. 
That which is acted on, the pale skin, will be called the operand, 
the factor will be called the operator, and what the operand is 
changed to will be called the transform. The change that occurs, 
which we can represent unambiguously by 

pale skin ~ dark skin 

is the transition. 
The transition is specified by the two states and the indication 

of which changed to which. 

TRANSFORMATION 

2/3. The single transition is, however, too simple. Experience has 
shown that if the concept of "change" is to be useful it must be 
enlarged to the case in which the operator can act on more than 
one operand, inducing a characteristic transition in each. Thus the 
operator "exposure to sunshine" will induce a number of transi
tions, among which are: 

cold soil~ warm soil 
unexposed photographic plate~ exposed plate 

coloured pigment~ bleached pigment 

Such a set of transitions, on a set of operands, is a transformation. 
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Another example of a transformation is given by the simple 
coding that turns each letter of a message to the one that follows 
it in the alphabet, Z being turned to A; so CAT would become 
DBU The transformation is defined by the table: 

A---'tB 
B---'tC 

Y---'tZ 
Z---'tA 

Notice that the transformation is defined, not by any reference to 
what it "really" is, nor by reference to any physical cause of the 
change, but by the giving of a set of operands and a statement of 
what each is changed to. The transformation is concerned with 
what happens, not with why it happens. Similarly, though we may 
sometimes know something of the operator as a thing in itself (as 
we know something of sunlight), this knowledge is often not 
essential; what we must know is how it acts on the operands; that 
is, we must know the transformation that it effects. 

For convenience of printing, such a transformation can also be 
expressed thus: 

A B ... Y Z 
B C ... z A 

We shall use this form as standard. 

2/4. Closure. When an operator acts on a set of operands it may 
happen that the set of transforms obtained contains no element 
that is not already present in the set of operands, i.e. the transfor
mation creates no new element. Thus, in the transformation 

A B ... Y Z 
B C ... Z A 

every element in the lower line occurs also in the upper. When this 
occurs, the set of operands is closed under the transformation. The 
property of "closure", is a relation between a transformation and 
a particular set of operands; if either is altered the closure may 
alter. 

It will be noticed that the test for closure is made, not by refer
ence to whatever may be the cause of the transformation but by 
reference of the details of the transformation itself. It can there
fore be applied even when we know nothing of the cause respon
sible for the changes. 

11 
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Ex. 1: Ifthe operands are the positive integers 1, 2, 3, and 4, and the operator is 
"add three to it", the transformation is: 

Is it closed ? 

I 1 2 3 4 
t 4 5 6 7 

Ex. 2. The operands are those English letters that have Greek equivalents (i.e. 
excludingj, q, etc.), and the operator is "turn each English letter to its Greek 
equivalent". Is the transformation closed? 

Ex. 3: Are the following transformations closed or not: 

A: t a b c d B: t f g p q 
aaaa gfqp 

C: t fgp 
gfq D: t fg 

gf 
Ex. 4: Write down, in the form of Ex. 3, a transformation that has only one oper

and and is closed. 
Ex. 5: Mr. C, of the Eccentrics' Chess Club, has a system of play that rigidly pre

scribes, for every possible position, both for White and slack (except for 
those positions in which the player is already mated) what is the player's best 
next move. The theory thus defines a transformation from position to posi
tion. On being assured that the transformation was a closed one, and that C 
always plays by this system, Mr. D. at once offered to play C for a large 
stake. Was D wise? 

2/5. A transformation may have an infinite number of discrete 
operands; such would be the transformation 

1 2 3 4 .. . 
4 5 6 7 .. . 

where the dots simply mean that the list goes on similarly without 
end. Infinite sets can lead to difficulties, but in this book we shall 
consider only the simple and clear. Whether such a transformation 
is closed or not is determined by whether one cannot, or can 
(respectively) find some particular, namable, transform that does 
not occur among the operands. In the example given above, each 
particular transform, 142857 for instance, will obviously be found 
among the operands. So that particular infinite transformation is 
closed. 

Ex. 1: In A the operands are the even numbers from 2 onwards, and the trans
forms are their squares: 

A: ~ 

Is A closed? 

2 4 6 
4 16 36 

Ex. 2: In transformation B the operands are all the positive integers 1, 2, 3, ... and 
each one's transform is its right-hand digit, so that, for instance, 127 ---7 7, 
and 6493 ---7 3. Is B closed? 

12 
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2/6. Notation. Many transformations become inconveniently 
lengthy if written out in extenso. Already, in S.2/3, we have been 
forced to use dots ... to represent operands that were not given 
individually. For merely practical reasons we shall have to 
develop a more compact method for writing down our transforma
tions though it is to be understood that, whatever abbreviation is 
used, the transformation is basically specified as in S.2/3. Several 
abbreviations will now be described. It is to be understood that 
they are a mere shorthand, and that they imply nothing more than 
has already been stated explicitly in the last few sections. 

Often the specification of a transformation is made simple by 
some simple relation that links all the operands to their respective 
transforms. Thus the transformation of Ex. 2/4/1 can be replaced 
by the single line 

Operand ---7 operand plus three. 
The whole transformation can thus be specified by the general 
rule, written more compactly, 

Op. ---7 Op. + 3, 

together with a statement that the operands are the numbers I, 2 3 
and 4. And commonly the representation can be made even 
briefer, the two letters being reduced to one: 

n---7n+3 (n=l,2,3,4) 

The word "operand" above, or the letter n (which means exactly 
the same thing), may seem somewhat ambiguous. If we are think
ing ofhow, say, 2 is transformed, then "n" means the number 2 
and nothing else, and the expression tells us that it will change to 
5. The same expression, however, can also be used with n not 
given any particular value. It then represents the whole transfor
mation. It will be found that this ambiguity leads to no confusion 
in practice, for the context will always indicate which meaning is 
intended. 

Ex. 1: Condense into one line the transformation 

A: ~ 1 2 3 
11 12 13 

Ex. 2: Condense similarly the transformations: 

{
1---7 7 {1---71 

a: 2 ---7 14 b: 2 ---7 4 
3 ---7 21 3 ---7 9 

{ 
I ---7 10 

d: 2---7 9 
3 ---7 8 

{
1---71 

e: 2 ---7 I 
3 ---7 1 

13 

{ 
1 ---71 

c: 2 ---7 1/2 
3 ---7 1/3 

{ 
1 ---71 

f 2---72 
3 ---7 3 
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We shall often require a symbol to represent the transform of 
such a symbol as n. It can be obtained conveniently by adding a 
prime to the operand, so that, whatever n may be, n ~ n'. Thus, if 
the operands of Ex. 1 are n, then the transformation can be written 
as n' = n + 10 (n = 1, 2, 3). 

Ex. 3: Write out in full the transformation in which the operands are the three 
numbers 5, 6 and 7, and in which n' ~ n- 3. Is it closed? 

Ex. 4: Write out in full the transformations in which: 

(i) n' ~ 5n (n = 5, 6, 7); 
(ii) n' =2n2 (n=-1,0,1). 

Ex. 5: If the operands are all the numbers (fractional included) between 0 and 1, 
and n' = 1/2 n, is the transformation closed? (Hint: try some representative 
values for n: 112,3/4, 1/4, 0.01, 0.99; try till you become sure of the answer.) 

Ex. 6: (Continued) With the same operands, is the transformation closed if n' = 
1/(n +I)? 

217. The transformations mentioned so far have all been charac
terised by being "single-valued". A transformation is single-val
ued if it converts each operand to only one transform. (Other 
types are also possible and important, as will be seen in S. 9/2 and 
12/8.) Thus the transformation 

t A B C D 
BAA D 

is single-valued; but the transformation 

t B or~ 
is not single-valued. 

B C 
A B orC 

D 
D 

2/8. Of the single-valued transformations, a type of some impor
tance in special cases is that which is one-one. In this case the 
transforms are all different from one another. Thus not only does 
each operand give a unique transform (from the single-valued
ness) but each transform indicates (inversely) a unique operand. 
Such a transformation is 

ABCDEFGH 
FHKLGJEM 

This example is one-one but not closed. 
On the other hand, the transformation of Ex. 2/6/2( e) is not one
one, for the transform "1" does not indicate a unique operand. A 
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transformation that is single-valued but not one-one will be 
referred to as many-one. 

Ex. 1: The operands are the ten digits 0, 1, ... 9; the transform is the third decimal 
digit oflog10 (n + 4). (For instance, if the operand is 3, we find in succession, 
7, log107, 0.8451, and 5; so 3 --7 5.) ls the transformation one-one or many
one? (Hint: find the transforms ofO, I, and so on in succession; use four-fig
ure tables.) 

2/9. The identity. An important transformation, apt to be dis
missed by the beginner as a nullity, is the identical transforma
tion, in which no change occurs, in which each transform is the 
same as its operand. If the operands are all different it is necessar
ily one-one. An example is fin Ex. 2/6/2. In condensed notation 
n'=n. 

Ex. 1: At the opening of a shop's cash register, the transformation to be made on 
its contained money is, in some machines, shown by a flag. What flag shows 
at the identical transformation ? 

Ex. 2: In cricket, the runs made during an over transform the side's score from 
one value to another. Each distinct number of runs defines a distinct trans
formation: thus if eight runs are scored in the over, the transformation is 
specified by n' = n + 8. What is the cricketer's name for the identical trans
formation? 

2/10. Representation by matrix. All these transformations can be 
represented in a single schema, which shows clearly their mutual 
relations. (The method will become particularly useful in Chapter 
9 and subsequently.) 

Write the operands in a horizontal row, and the possible trans
forms in a column below and to the left, so that they form two 
sides of a rectangle. Given a particular transformation, put a "+" 
at the intersection of a row and column if the operand at the head 
of the column is transformed to the element at the left-hand side; 
otherwise insert a zero. Thus the transformation 

would be shown as 

A 
B 

c 

I ABC 
t A C C 

A 

+ 
0 

0 

B 

0 

0 

+ 

c 
0 

0 

+ 
The arrow at the top left comer serves to show the direction of the 
transitions. Thus every transformation can be shown as a matrix. 

l:'l 
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If the transformation is large, dots can be used in the matrix if 
their meaning is unambiguous. Thus the matrix of the transforma-
tion in which n' = n + 2, and in which the operands are the positive 
integers from 1 onwards, could be shown as 

1 2 3 4 5 

0 0 0 0 0 
2 0 0 0 0 0 
3 + 0 0 0 0 
4 0 + 0 0 0 
5 0 0 + 0 0 

(The symbols in the main diagonal, from the top left-hand comer, 
have been given in bold type to make clear the positional relations.) 

Ex. 1: How are the +'s distributed in the matrix of an identical transformation? 
Ex. 2: Ofthe three transformations, which is (a) one-one, (b) single-valued but 

not one-one, (c) not single-valued ? 
(i) (ii) (iii) 

A B c D A B c D A B c D 

A + 0 0 + A 0 + 0 0 A 0 0 0 0 
B 0 0 + 0 B 0 0 0 + B + 0 0 + 
c + 0 0 0 c + 0 0 0 c 0 + 0 0 
D 0 + 0 + D 0 0 + 0 D 0 0 + 0 

Ex. 3: Can a closed transformation have a matrix with (a) a row entirely of zeros? 
(b) a column of zeros ? 

Ex. 4: Form the matrix of the transformation that has n' ~ 2n and the integers as 
operands, making clear the distribution of the +'s. Do they he on a straight 
line? Draw the graph ofy ~ 2x; have the lines any resemblance? 

Ex. 5: Take a pack of playing cards, shuffle them, and deal out sixteen cards face 
upwards in a four-by-four square. Into a four-by-four matrix write+ if the 
card in the corresponding place is black and o if it is red. Try some examples 
and identify the type of each, as in Ex. 2. 

Ex. 6: When there are two operands and the transformation is closed, how many 
different matrices are there? 

Ex. 7: (Continued). How many are single-valued? 

REPEATED CHANGE 

2/11. Power. The basic properties of the closed single-valued 
transformation have now been examined in so far as its single 
action is concerned, but such a transformation may be applied 
more than once, generating a series of changes analogous to the 
series of changes that a dynamic system goes through when active. 
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The generation and properties of such a series must now be con
sidered. 

Suppose the second transformation of S.2/3 (call it Alpha) has 
been used to tum an English message into code. Suppose the 
coded message to be again so encoded by Alpha-what effect will 
this have? The effect can be traced letter by letter. Thus at the first 
coding A became B, which, at the second coding, becomes C; so 
over the double procedure A has become C, or in the usual nota
tion A ~ C. Similarly B ~ D; and so on to Y ~A and Z ~B. 
Thus the double application of Alpha causes changes that are 
exactly the same as those produced by a single application of the 
transformation 

~ A B ... Y Z 
CD ... A B 

Thus, from each closed transformation we can obtain another 
closed transformation whose effect, if applied once, is identical 
with the first one's effect if applied twice. The second is said to be 
the "square" ofthe first, and to be one of its "powers" (S.2/14). If 
the first one was represented by T, the second will be represented 
by T2; which is to be regarded for the moment as simply a clear 
and convenient label for the new transformation. 

Ex. 1: If A: ~ ~ ~ ~· what isA2? 

Ex. 2: Write down some identity transformation; what is its square? 
Ex. 3: (See Ex. 2/4/3.) What is A2? 
Ex. 4: What transformation is obtained when the transformation n' = n+ 1 is 

applied twice to the positive integers? Write the answer in abbreviated 
form, as n' = .... (Hint: try writing the transformation out in full as in 
S.2/4.) 

Ex. 5: What transformation is obtained when the transformation n' = 7n is applied 
twice to the positive integers? 

Ex. 6: If K is the transformation 

A B C 

A 0 + + 
B 0 0 0 
c + 0 0 

what is K2? Give the result in matrix form. (Hint: try re-writing K in some 
other form and then convert back.) 

Ex. 7: Try to apply the transformation W twice: 

W: ~ f g h 
g h k 
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2/12. The trial in the previous exercise will make clear the impor
tance of closure. An unclosed transformation such as W cannot be 
applied twice; for although it changes h to k, its effect on k is 
undefined, so it can go no farther. The unclosed transformation is 
thus like a machine that takes one step and then jams. 

2/13. Elimination. When a transformation is given in abbreviated 
arm, such as n'= n + 1, the result of its double application must be 
found, if only the methods described so far are used, by re-writing 
he transformation to show every operand, performing the double 
application, and then re-abbreviating. There is, however, a 
quicker method. To demonstrate and explain it, let us write out In 
full he transformation T: n'= n + 1, on the positive integers, show
ing he results of its double application and, underneath, the gen
eral symbol for what lies above: 

rt 1 2 3 ... n .. . t 2 3 4 ... n' .. . 
T 3 4 5 ... n" .. . 

n 11 is used as a natural symbol for the transform of n ',just as n' is 
the transform of n. 

Now we are given that n' = n + 1. As we apply the same trans
formation again it follows that n 11 must be I more than n 11 • Thus 
n 11 =n'+l. 

To specify the single transformation T2 we want an equation 
that will show directly what the transform n 11 is in terms of the 
operand n. Finding the equation is simply a matter of algebraic 
elimination: from the two equations n 11 = n' + 1 and n' = n + 1, 
eliminate n'. Substituting for n' in the first equation we get (with 
brackets to show the derivation) n 11 = (n + 1) + 1, i.e. n 11 = n + 2. 

This equation gives correctly the relation between ogerand (n) 
and transform (n") when T2 is applied, and in that way T is speci
fied. For uniformity of notation the equation should now be re-writ
ten as m' = m + 2. This is the transformation, in standard notation, 
whose single application (hence the single prime on m) causes the 
same change as the double application ofT. (The change from n to 
m is a mere change of name, made to avoid confusion.) 

The rule is quite general. Thus, if the transformation is n' = 

2n- 3, then a second application will give second transforms n 11 

that are related to the first by n 11 = 2n'- 3. Substitute for n', using 
brackets freely: 

n 11 =2(2n-3)-3 
= 4n- 9. 
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So the double application causes the same change as a single 
application of the transformation m' = 4m - 9. 

2/14. Higher powers. Higher powers are found simply by adding 
symbols for higher transforms, n"', etc., and eliminating the sym
bols for the intermediate transforms. Thus, find the transforma
tion caused by three applications of n' = 2n - 3. Set up the 
equations relating step to step: 

n' = 2n-3 
n" =2n'-3 
n'" = 2n"- 3 

Take the last equation and substitute for n", getting 

n'"= 2(2n'- 3)- 3 
= 4n'-9. 

Now substitute for n': 

n"'= 4(2n- 3)- 9 
= 8n- 21. 

So the triple application causes the same changes as would be 
caused by a single application ofm' = 8m- 21. If the original was 
T, this is T3. 

Ex. I: Eliminate n' from n" = 3n' and n' = 3n. Form the transformation corre
sponding to the result and verify that two applications of n' = 3n gives the 
same result. 

Ex. 2: Eliminate a' from a"= a'+ 8 and a'= a + 8. 
Ex. 3: Eliminate a" and a' from a"'= 7a". a"= 7a', and a'= 7a. 
Ex. 4: Eliminate k' from k" = -3k' + 2, k' =- 3k + 2. Verity as in Ex. I. 
Ex. 5: Eliminate m' from m" =log m', m' =log m. 
Ex. 6: Eliminate p' from p"=(p;J, p' =p2 

Ex. 7: Find the transformations that are equivalent to double applications, on all 
the positive numbers greater than 1, of: 

(i) n' = 2n + 3; 
(ii) n' = n2 + n; 

(iii) n' =I + 2log n. 

Ex. 8: Find the transformation that is equivalent to a triple application of 
n' = -3n- 1 to the positive and negative integers and zero. Verify as in 
Ex. 1. 

Ex. 9: Find the transformations equivalent to the second, third, and further 
applications of the transformation n' = 11(1 + n). (Note: the series discov
ered by Fibonacci in the 12th century, I, I, 2, 3, 5, 8, 13, ... is extended by 
taking as next term the sum of the previous two; thus, 3 + 5 = 8, 5 + 8 = 13, 
8+13= ...... ,etc.) 
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Ex. 10: What is the result of applying the transformation n' = lin twice, 
when the operands are all the positive rational numbers (i.e. all the 
fractions) ? 

Ex. 11: Here is a geometrical transformation. Draw a straight line on paper and 
mark its ends A and B. This line, in its length and position, is the operand. 
Obtain its transform, with ends A' and B', by the transformation-ruleR: A' is 
midway between A and B; B' is found by rotating the line A'B about A' 
through a right angle anticlockwise. Draw such a line, apply R repeatedly, 
and satisfy yourself about how the system behaves. 

*Ex. 12: (Continued). if familiar with analytical geometry, letA start at (0,0) and 
Bat (0,1), and find the limiting position. (Hint: Build up A's fmal x-co-ordi
nate as a series, and sum; similarly for A'sy-co- ordinate.) 

2/15. Notation. The notation that indicates the transform by the 
addition of a prime (') is convenient if only one transformation is 
under consideration; but if several transformations might act on n, 
the symbol n' does not show which one has acted. For this reason, 
another symbol is sometimes used: if n is the operand, and trans
formation Tis applied, the transform is represented by T(n). The 
four pieces of type, two letters and two parentheses, represent one 
quantity, a fact that is apt to be confusing until one is used to it. 
T(n), really n' in disguise, can be transformed again, and would be 
written T(T(n)) if the notation were consistent; actually the outer 
brackets are usually eliminated and the T 's combined, so that n" 
is written as T2(n). The exercises are intended to make this nota
tion familiar, for the change is only one of notation. 

I 1 2 3 
Ex. 1: Iff t 3 1 2 

whatisJ\3)?}{1)?;2(3)? 

Ex. 2: Write out in full the transformation g on the operands, 6, 7, 8, if g(6) = 8, 
g(7) = 7, g(8) = 8. 

Ex. 3: Write out in full the transformation h on the operands a, 13, x. 8, if h( a)= 
x. h2(a) = 13. h3( a)= o, h4( a) =a. 

Ex. 4: If A(n) is n + 2, what is A(l5)? 

Ex. 5: Ifj{n) is -n2 + 4, what isj{2)? 

Ex. 6: If T(n) is 3n, what is T2(n)? (Hint: if uncertain, write out Tin extenso.) 

Ex. 7: If I is an identity transformation, and t one of its operands, what is /(t)? 

2/16. Product. We have just seen that after a transformation Thas 
been applied to an operand n, the transform T(n) can be treated as 
an operand by T again, getting T(T(n)), which is written T2(n). In 
exactly the same way T(n) may perhaps become operand to a 
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transformation U, which will give a transform U(T(n)). Thus, if 
they are 

a b c d 
b d a b 

and U~ a b c d 
d c d b 

then T(b,) is d, and U(T(b)) is U(d), which is b. Tand Uapplied in 
that order, thus define a new transformation, V, which is easily 
found to be 

a b c d 
c b d c 

Vis said to be the product or composition ofT and U. It gives 
simply the result ofT and U being applied in succession, in that 
order one step each. 

If U is applied first, then U(b) is, in the example above, c, and 
T(c) is a: so T(U(b)) is a, not the same as U(T(b)). The product, 
when U and Tare applied in the other order is 

a b c d 
b a b d 

For convenience, V can be written as UT, and Was TU. It must 
always be remembered that a change of the order in the product 
may change the transformation. 

(It will be noticed that V may be impossible, i.e. not exist, if 
some ofT's transforms are not operands for U.) 

Ex. I: Write out in full the transformation U2T 
Ex. 2: Write out in full: UTU. 
*Ex. 3: Represent T and U by matrices and then multiply these two matrices in 

the usual way (rows into columns), letting the product and sum of +'s be+: 
call the resulting matrix M1. Represent V by a matrix, call it M2. Compare 
M 1 andM2. 

2/17. Kinematic graph. So far we have studied each transforma
tion chiefly by observing its effect, in a single action on all its pos
sible operands (e g. S.2/3). Another method (applicable only 
when the transformation is closed) is to study its effect on a single 
operand over many, repeated, applications. The method corre
sponds, in the study of a dynamic system, to setting it at some ini
tial state and then allowing it to go on, without further 
interference, through such a series of changes as its inner nature 
determines. Thus, in an automatic telephone system we might 
observe all the changes that follow the dialling of a number, or in 
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an ants' colony we might observe all the changes that follow the 
placing of a piece of meat near-by. 

Suppose, for definiteness, we have the transformation 

1 A B C D E 
Ut D A ED D 

If Uis applied to C, then to U(C), then to U2(C), then to U\C) and 
so on, there results the series: C, E, D, D, D, ... and so on, with D 
continuing for ever. If U is applied similarly to A there results the 
series A, D, D, D, ... with D continuing again. 
These results can be shown graphically, thereby displaying to the 
glance results that otherwise can be apprehended only after 
detailed study. To form the kinematic graph of a transformation, 
the set of operands is written down, each in any convenient place, 
and the elements joined by arrows with the rule that an arrow goes 
from A to B if and only if A is transformed in one step to B. Thus 
U gives the kinematic graph 

C--'?E--'?Df-Af-B 

(Whether D has a re-entrant arrow attached to itself is optional if 
no misunderstanding is likely to occur.) 

If the graph consisted of buttons (the operands) tied together 
with string (the transitions) it could, as a network, be pulled into 
different shapes: 

C--'?E B--'?A 
'\1 

D 

? 
B--'?A 

or: 1 
D f-Ef-C 

and so on. These different shapes are not regarded as different 
graphs, provided the internal connexions are identical. 

The elements that occur when Cis transformed cumulatively by 
U (the series C, E, D, D, .. .) and the states encountered by a point 
in the kinematic graph that starts at C and moves over only one 
arrow at a step, always moving in the direction of the arrow, are 
obviously always in correspondence. Since we can often follow 
the movement of a point along a line very much more easily than 
we can compute U(C), U2(C), etc., especially if the transforma
tion is complicated, the graph is often a most convenient represen
tation of the transformation in pictorial form. The moving point 
will be called the representative point. 
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When the transformation becomes more complex an important 
feature begins to show. Thus suppose the transformation is 

1 A B C DE F G HI J K L M N P Q 
T:t DHDI QGQHAEENB ANE 

Its kinematic graph is: 

p c 
'\1 i/ 
N~A ~D 

? '\1 i/ 
L I 

K 
'\1 

? 
J 

E ~Qf--Gf--F 

By starting at any state and following the chain of arrows we can 
verify that, under repeated transformation, the representative 
point always moves either to some state at which it stops, or to 
some cycle around which it circulates indefinitely. Such a graph 
is like a map of a country's water drainage, showing, if a drop of 
water or a representative point starts at any place, to what region 
it will come eventually. These separate regions are the graph's 
basins. These matters obviously have some relation to what is 
meant by "stability", to which we shall come in Chapter 5. 

Ex. 1: Draw the kinematic graphs of the transformations of A and Bin Ex. 2/4/3. 
Ex. 2: How can the graph of an identical transformation be recognised at a 

glance? 
Ex. 3: Draw the graphs of some simple closed one-one transformations. What is 

their characteristic feature? 
Ex. 4: Draw the graph of the transformation V in which n, is the third decimal 

digit oflog10(n + 20) and the operands are the ten digits 0, I, ... , 9. 
Ex. 5: (Continued) From the graph of V read off at once what is V(8), V2(4), 

0(6). 0\5). 
Ex. 6: If the transformation is one-one, can two arrows come to a single point? 
Ex. 7: lfthe transformation is many-one, can two arrows come to a single point? 
Ex. 8: Form some closed single-valued transformations like T, draw their kine-

matic graphs, and notice their characteristic features. 
Ex. 9: If the transformation is single-valued, can one basin contain two cycles? 
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Chapter 3 

THE DETERMINATE MACHINE 

3/1. Having now established a clear set of ideas about transforma
tions, we can tum to their first application: the establishment of an 
exact parallelism between the properties of transformations, as 
developed here, and the properties of machines and dynamic sys
tems, as found in the real world. 

About the best definition of"machine" there could of course be 
much dispute. A determinate machine is defined as that which 
behaves in the same way as does a closed single-valued transfor
mation. The justification is simply that the definition works- that 
it gives us what we want, and nowhere runs grossly counter to 
what we feel intuitively to be reasonable. The real justification 
does not consist of what is said in this section, but of what follows 
in the remainder of the book, and, perhaps, in further develop
ments. 

It should be noticed that the definition refers to a way of behav
ing, not to a material thing. We are concerned in this book with 
those aspects of systems that are determinate-that follow regular 
and reproducible courses. It is the determinateness that we shall 
study, not the material substance. (The matter has been referred to 
before in Chapter 1.) 

Throughout Part 1, we shall consider determinate machines, and 
the transformations to be related to them will all be single-valued. 
Not until S.9/2 shall we consider the more general type that is 
determinate only in a statistical sense. 

As a second restriction, this Chapter will deal only with the 
machine in isolation-the machine to which nothing actively is 
being done. 

As a simple and typical example of a determinate machine, con
sider a heavy iron frame that contains a number of heavy beads 
joined to each other and to the frame by springs. If the circum
stances are constant, and the beads are repeatedly forced to some 
defined position and then released, the beads' movements will on 
each occasion be the same, i.e. follow the same path. The whole 
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system, started at a given "state", will thus repeatedly pass 
through the same succession of states 

By a state of a system is meant any well-defined condition or 
property that can be recognised if it occurs again. Every system 
will naturally have many possible states. 

When the beads are released, their positions (P) undergo a 
series of changes, P0, P1, P2 ... ;this point of view at once relates 
the system to a transformation 

Po PI P2 P3 
P, P2 P3 P4 

Clearly, the operands of the transformation correspond to the 
states of the system. 

The series of positions taken by the system in time clearly cor
responds to the series of elements generated by the successive 
powers of the transformation (S.2/14). Such a sequence of states 
defines a trajectory or line of behaviour. 

Next, the fact that a determinate machine, from one state, can
not proceed to both of two different states corresponds, in the 
transformation, to the restriction that each transform is sin
gle-valued. 

Let us now, merely to get started, take some further examples, 
taking the complications as they come. 

A bacteriological culture that has just been inoculated will 
increase in "number of organisms present" from hour to hour. If 
at first the numbers double in each hour, the number in the culture 
will change in the same way hour by hour as n is changed in suc
cessive powers of the transformation n' = 2n. 

If the organism is somewhat capricious in its growth, the sys
tem's behaviour, i.e. what state will follow a given state, becomes 
somewhat indeterminate So "determinateness" in the real system 
evidently corresponds' in the transformation, to the transform of 
a given operand being single-valued. 

Next consider a clock, in good order and wound, whose hands, 
pointing now to a certain place on the dial, will point to some 
determinate place after the lapse of a given time. The positions of 
its hands correspond to the transformation's elements. A single 
transformation corresponds to the progress over a unit interval of 
time; it will obviously be of the form n' = n + k. 

In this case, the "operator" at work is essentially undefinable for 
it has no clear or natural bounds. It includes everything that makes 
the clock go: the mainspring (or gravity), the stiffness of the brass 
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in the wheels, the oil on the pivots, the properties of steel, the inter
actions between atoms of iron, and so on with no definite limit. As 
we said in S.2/3, the "operator" is often poorly defined and some
what arbitrary-a concept of little scientific use. The transforma
tion, however, is perfectly well defined, for it refers only to the facts 
of the changes, not to more or less hypothetical reasons for them. 

A series of changes as regular as those of the clock are not 
readily found in the biological world, but the regular courses of 
some diseases show something of the same features. Thus in the 
days before the sulphonamides, the lung in lobar pneumonia 
passed typically through the series of states: Infection --7 consol
idation --7 red hepatisation --7 grey hepatisation --7 resolution --7 
health. Such a series of states corresponds to a transformation that 
is well defined, though not numerical. 

Next consider an iron casting that has been heated so that its 
various parts are at various but determinate temperatures. If its 
circumstances are fixed, these temperatures will change in a 
determinate way with time. The casting's state at any one moment 
will be a set of temperatures (a vector, S.3/5), and the passage 
from state to state, S0 --7 S1 --7 S2 --7 .. . , will correspond to the 
operation of a transformation, converting operand S0 successively 
to T(S0), T2(S0), T3(S0), ... , etc. 

A more complex example, emphasising that transformations do 
not have to be numerical to be well defined, is given by certain 
forms of reflex animal behaviour. Thus the male and female 
three spined stickleback form, with certain parts of their environ
ment, a determinate dynamic system. Tinbergen (in his Study of 
Instinct) describes the system's successive states as follows: "Each 
reaction of either male or female is released by the preceding reac
tion of the partner. Each arrow (in the diagram below) represents a 
causal relation that by means of dummy tests has actually been 
proved to exist. The male's first reaction, the zigzag dance, is 
dependent on a visual stimulus from the female, in which the sign 
stimuli "swollen abdomen" and the special movements play a part. 
The female reacts to the red colour of the male and to his zigzag 
dance by swimming right towards him. This movement induces 
the male to tum round and to swim rapidly to the nest. This, in tum, 
entices the female to follow him, thereby stimulating the male to 
point its head into the entrance. His behaviour now releases the 
female's next reaction: she enters the nest.. .. This again releases 
the quivering reaction in the male which induces spawning. The 
presence of fresh eggs in the nest makes the male fertilise them." 
Tinbergen summarises the succession of states as follows: 
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Appears 
~ Zigzag dance 

Courts 7' 
~ Leads 

Female Follows 7' 
Male ~ Shows nest entrance 

Enters nest 7' 
~ Trembles 

Spawns 7' 
~ Fertilises 

He thus describes a typical trajectory. 
Further examples are hardly necessary, for the various branches 

of science to which cybernetics is applied will provide an abun
dance, and each reader should supply examples to suit his own 
speciality. 

By relating machine and transformation we enter the discipline 
that relates the behaviours of real physical systems to the proper
ties of symbolic expressions, written with pen on paper. The 
whole subject of "mathematical physics" is a part of this disci
pline. The methods used in this book are however somewhat 
broader in scope for mathematical physics tends to treat chiefly 
systems that are continuous and linear (S.3/7). The restriction 
makes its methods hardly applicable to biological subjects, for in 
biology the systems arc almost always non- linear, often 
non-continuous, and in many cases not even metrical, i.e. express
ible in number, The exercises below (S.3/4) are arranged as a 
sequence, to show the gradation from the very general methods 
used in this book to those commonly used in mathematical phys
ics. The exercises are also important as illustrations of the corre
spondences between transformations and real systems. 

To summarise: Every machine or dynamic system has many 
distinguishable states. If it is a determinate machine, fixing its cir
cumstances and the state it is at will determine, i.e. make unique 
the state it next moves to. These transitions of state correspond to 
those of a transformation on operands, each state corresponding to 
a particular operand. Each state that the machine next moves to 
corresponds to that operand's transform. The successive powers 
of the transformation correspond, in the machine, to allowing 
double, treble, etc., the unit time-interval to elapse before record
ing the next state. And since a determinate machine cannot go to 
two states at once, the corresponding transformation must be sin
gle-valued. 
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Ex.: Name two states that are related as operand and transform, with 
time as the operator, taking the dynamic system from: 

(a) Cooking, (b) Lighting a fire; (c) The petrol engine; (d) Embryo
logical development; (e) Meteorology;(±) Endocrinology; (g) Econom
ics; (h) Animal behaviour; (i) Cosmology. (Meticulous accuracy is not 
required.) 

3/2. Closure. Another reason for the importance of closure can 
now be seen. The typical machine can always be allowed to go on 
in time for a little longer, simply by the experimenter doing noth
ing! This means that no particular limit exists to the power that the 
transformation can be raised to. Only the closed transformations 
allow, in general, this raising to any power. Thus the transforma
tion T 

T:~ abcdefg 
ebmfgcf 

is not closed. 1\a) is c and T5(a) ism. But T(m) is not defined, so 
T'(a) is not defined. With a as initial state, this transformation 
does not define what happens after five steps. Thus the transfor
mation that represents a machine must be closed. The full signif
icance of this fact will appear in S.l 0/4. 

3/3. The discrete machine. At this point it may be objected that 
most machines, whether man-made or natural, are smooth-work
ing, while the transformations that have been discussed so far 
change by discrete jumps. These discrete transformations are, 
however, the best introduction to the subject. Their great advan
tage IS their absolute freedom from subtlety and vagueness, for 
every one of their properties is unambiguously either present or 
absent. This simplicity makes possible a security of deduction that 
is essential if further developments are to be reliable. The subject 
was touched on in S.2/1. 

In any case the discrepancy is of no real importance. The discrete 
change has only to become small enough in its jump to approximate 
as closely as is desired to the continuous change. It must further be 
remembered that in natural phenomena the observations are almost 
invariably made at discrete intervals; the "continuity" ascribed to 
natural events has often been put there by the observer's imagina
tion, not by actual observation at each of an infinite number of 
points. Thus the real truth is that the natural system is observed at 
discrete points, and our transformation represents it at discrete 
points. There can, therefore, be no real incompatibility. 
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3/4. Machine and transformation. The parallelism between 
machine and transformation is shown most obviously when we 
compare the machine's behaviour, as state succeeds state, with the 
kinematic graph (S.2/17), as the arrows lead from element to ele
ment. If a particular machine and a particular graph show full cor
respondence it will be found that: 

(1) Each possible state of the machine corresponds uniquely to 
a particular element in the graph, and vice versa. The correspon
dence is one-one. 

(2) Each succession of states that the machine passes through 
because of its inner dynamic nature corresponds to an unbroken 
chain of arrows through the corresponding elements. 

(3) If the machine goes to a state and remains there (a state of 
equilibrium, S.5/3) the element that corresponds to the state will 
have no arrow leaving it (or a re-entrant one, S.2/17). 

(4) If the machine passes into a regularly recurring cycle of 
states, the graph will show a circuit of arrows passing through the 
corresponding elements. 

(5) The stopping of a machine by the experimenter, and its 
restarting from some new, arbitrarily selected, state corresponds, 
in the graph, to a movement of the representative point from one 
element to another when the movement is due to the arbitrary 
action of the mathematician and not to an arrow. 

When a real machine and a transformation are so related, the 
transformation is the canonical representation of the machine, 
and the machine is said to embody the transformation. 

Ex. I : A culture medium is inoculated with a thousand bacteria, their number 
doubles in each half-hour. Write down the corresponding transformation 

Ex. 2: (Continued.) Find n after the 1st, 2nd, 3rd, ... , 6th steps. 
Ex. 3: (Continued.) (i) Draw the ordinary graph, with two axes, showing the cul

ture's changes in number with time. (ii) Draw the kinematic graph of the sys
tem's changes of state. 

Ex. 4: A culture medium contains 109 bacteria and a disinfectant that, in each 
minute, kills 20 per cent of the survivors. Express the change in the number 
of survivors as a transformation. 

Ex. 5: (Continued.) (i) Find the numbers of survivors after 1, 2, 3, 4, 5 minutes. 
(ii) To what limit does the number tend as time goes on indefinitely? 

Ex. 6: Draw the kinematic graph of the transformation in which n' is, in a table 
of four-figure logarithms, the rounded-off right-hand digit of log10 (n+70). 
What would be the behaviour of a corresponding machine? 

Ex. 7: (Continued, but with 70 changed to 90). 
Ex. 8: (Continued, but with 70 changed to 10.) How many basins has this 

graph? 
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Ex. 9: In each decade a country's population diminishes by 10 per cent, but in 
the same interval a million immigrants are added. Express the change from 
decade to decade as a transformation, assuming that the changes occur in 
finite steps. 

Ex. 10: (Continued.) If the country at one moment has twenty million inhabit
ants, find what the population will be at the next three decades. 

Ex. 11: (Continued.) Find, in any way you can, at what number the population 
will remain stationary. (Hint: when the population is ''stationary" what rela
tion exists between the numbers at the beginning and at the end of the 
decade?-what relation between operand and transform?) 

Ex. 12: A growing tadpole increases in length each day by 1.2 mm. Express this 
as a transformation. 

Ex. 13: Bacteria are growing in a culture by an assumed simple conversion of 
food to bacterium; so if there was initially enough food for 108 bacteria and 
the bacteria now number n, then the remaining food is proportional to 108-

n. If the law of mass action holds, the bacteria will increase in each interval 
by a number proportional to the product: (number of bacteria) x (amount of 
remaining food). In this particular culture the bacteria are increasing, in each 
hour, by 1 o-8n (I 08 -n ). Express the changes from hour to hour by a transfor
mation. 

Ex. 14: (Continued.) If the culture now has 10,000,000 bacteria, find what the 
number will be after 1, 2, ... , 5 hours. 

Ex. 15: (Continued.) Draw an ordinary graph with two axes showing how the 
number of bacteria will change with time. 

VECTORS 

3/5. In the previous sections a machine's "state" has been 
regarded as something that is known as a whole, not requiring 
more detailed specification. States of this type are particularly 
common in biological systems where, for instance, characteristic 
postures or expressions or patterns can be recognised with confi
dence though no analysis of their components has been made. The 
states described by Tinbergen in S.3/1 are of this type. So are the 
types of cloud recognised by the meteorologist. The earlier sec
tions of this chapter will have made clear that a theory of such 
unanalysed states can be rigorous. 

Nevertheless, systems often have states whose specification 
demands (for whatever reason) further analysis. Thus suppose a 
news item over the radio were to give us the "state", at a certain 
hour, of a Marathon race now being run; it would proceed to give, 
for each runner, his position on the road at that hour. These posi
tions, as a set, specify the "state" of the race. So the "state" of the 
race as a whole is given by the various states (positions) of the 
various runners, taken simultaneously. Such "compound" states 
are extremely common, and the rest of the book will be much con-
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cerned with them. It should be noticed that we are now beginning 
to consider the relation, most important in machinery that exists 
between the whole and the parts. Thus, it often happens that the 
state of the whole is given by a list of the states taken, at that 
moment, by each of the parts. 

Such a quantity is a vector, which is defined as a compound 
entity, having a definite number of components. It is conve
niently written thus: (a1, a2, ••• , an), which means that the first 
component has the particular value a 1, the second the value a2, 

and so on. 
A vector is essentially a sort of variable, but more complex than 

the ordinary numerical variable met with in elementary mathe
matics. It is a natural generalisation of "variable", and is of 
extreme importance, especially in the subjects considered in this 
book. The reader is advised to make himself as familiar as possi
ble with it, applying it incessantly in his everyday life, until it has 
become as ordinary and well understood as the idea of a variable. 
It is not too much to say that his familiarity with vectors will 
largely determine his success with the rest of the book. 

Here are some well-known examples. 

(1) A ship's "position" at any moment cannot be described by a 
simple number; two numbers are necessary: its latitude and its 
longitude. "Position" is thus a vector with two components. One 
ships position might, for instance, be given by the vector (58°N, 
17°W). In 24 hours, this position might undergo the transition 
(58°N, l7°W) ---7 (59°N, 20°W). 

(2) "The weather at Kew" cannot be specified by a single num
ber, but it can be specified to any desired completeness by our tak
ing sufficient components. An approximation would be the 
vector: height of barometer, temperature, cloudiness, humidity), 
and a particular state might be (998 mbars, 56.2°F, 8, 72%). A 
weather prophet is accurate if he can predict correctly what state 
this present a state will change to. 

(3) Most of the administrative "forms" that have to be filled in 
are really intended to define some vector. Thus the form that the 
motorist has to fill in: 

Age of car: .................... .. 
Horse-power: ................. . 
Colour: .......................... .. 

is merely a vector written vertically. 
Two vectors are considered equal only if each component of 
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the one is equal to the corresponding component of the other. 
Thus if there is a vector (w,x,y,z), in which each component is 
some number, and if two particular vectors are ( 4,3,8,2) and 
( 4,3,8, 1 ), then these two particular vectors are unequal; for, in the 
fourth component, 2 is not equal to 1. (If they have different com
ponents, e.g. (4,3,8,2) and (H,T), then they are simply not compa
rable.) 

When such a vector is transformed, the operation is in no way 
different from any other transformation, provided we remember 
that the operand is the vector as a whole, not the individual com
ponents (though how they are to change is, of course, an essential 
part of the transformation's definition). Suppose, for instance, the 
"system" consists of two coins, each of which may show either 
Head or Tail. The system has four states, which are 

(H,H) (H, T) (T,H) and (T, T). 

Suppose now my small niece does not like seeing two heads up, 
but always alters that to (T,H), and has various other preferences. 
It might be found that she always acted as the transformation 

N t (H,H) (H,I) (T,H) (T,I) 
(T,H) (T, 7) (T,H) (H,H) 

As a transformation on four elements, N differs in no way from 
those considered in the earlier sections. 

There is no reason why a transformation on a set of vectors 
should not be wholly arbitrary, but often in natural science the 
transformation has some simplicity. Often the components 
change in some way that is describable by a more or less simple 
rule. Thus if M were: 

M t (H,H) (H, 7) (T,H) (T,I) 
· (T,H) (T,I) (H,H) (H,I) 

it could be described by saying that the first component always 
changes while the second always remains unchanged. 

Finally, nothing said so far excludes the possibility that some or 
all of the components may themselves be vectors! (E.g. S.6/3.) 
But we shall avoid such complications if possible. 

Ex. 1: Using ABC as first operand, find the transformation generated by repeated 
application of the operator "move the left-hand letter to the right" (e.g. ABC 
-7BCA). 

Ex. 2: (Continued.) Express the transformation as a kinematic graph. 
Ex. 3: Using (1, -1) as first operand, find the other elements generated by 

repeated application of the operator ''interchange the two numbers and then 
multiply the new left-hand number by minus one". 
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Ex. 4: (Continued.) Express the transformation as a kinematic graph. 
Ex. 5: The first operand, x, is the vector (0, 1,1 ); the operator F is defined thus: 

(i) the left-hand number of the transform is the same as the middle number 
of the operand; 
(ii) the middle number of the transform is the same as the right-hand number 
of the operand; 
(iii) the right-hand number of the transform is the sum of the operand's mid
dle and right-hand numbers. 
Thus, F(x) is (1,1,2), and F2(x) is (1,2,3). Find F3 ~r), P(x), F\x). (Hint: 
compare Ex. 2114/9.) 

3/6. Notation. The last exercise will have shown the clumsiness of 
trying to persist in verbal descriptions. The transformation F is in 
fact made up of three sub-transformations that are applied simul
taneously, i.e. always in step. Thus one sub-transformation acts on 
the left-hand number, changing it successively through 0 ~ 1 ~ 
1 ~ 2 ~ 3 ~ 5, etc. If we call the three components a, b, and c, 
then F, operating on the vector (a, b, c), is equivalent to the simul
taneous action of the three sub-transformations, each acting on 
one component only: 

F:{ %: =~ 
c' =b + c 

Thus, a'= b says that the new value of a, the left-hand number in 
the transform, is the same as the middle number in the operand; 
and so on. Let us try some illustrations of this new method; no 
new idea is involved, only a new manipulation of symbols. (The 
reader is advised to work through all the exercises, since many 
important features appear, and they are not referred to elsewhere.) 

Ex. 1: If the operands are of the form (a,b), and one of them is (1/2,2), find the 
vectors produced by repeated application to it of the transformation T: 

T: j f=ba 

(Hint: find T(l/2,2), T\1,2), etc.) 
Ex. 2: If the operands are vectors of the form (v,w,x,y,z) and U is 

w'=v l v'=w 

U: x' =x 

find U(a), where a= (2, 1 ,0,2,2). 

y'=z 
z'=y 

Ex. 3: (Continued.) Draw the kinematic graph of U if its only operands are a, 
U(a), U2(a), etc. 
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Ex. 4: (Continued.) How would the graph alter if further operands were 
added? 

Ex. 5: Find the transform of (3,- 2, I) by A if the general form is (g,h,j) and the 
transformation is 

{ 
g' =2g-h 

A: h' =h-j 
j'=g+h 

Ex. 6: Arthur and Bill agree to have a gamble. Each is to divide his money into 
two equal parts, and at the umpire's signal each is to pass one part over to the 
other player. Each is then again to divide his new wealth into two equal parts 
and at a signal to pass a half to the other; and so on. Arthur started with 8/
and Bill with 4/-. Represent the initial operand by the vector (8,4). Find, in 
any way you can, all its subsequent transforms. 

Ex. 7: (Continued.) Express the transformation by equations as in Ex. 5 
above. 

Ex. 8: (Continued.) Charles and David decide to play a similar game except that 
each will hand over a sum equal to a half of what the other possesses. if they 
start with 30/- and 34/- respectively, what will happen to these quantities? 

Ex. 9: (Continued.) Express the transformation by equations as in Ex. 5. 

Ex. I 0: If, in Ex. 8, other sums of money had been started with, who in general 
would be the winner? 

Ex. 11 : ln an aquarium two species of animalcule are prey and predator. In each 
day, each predator destroys one prey, and also divides to become two pred
ators. If today the aquarium has m prey and n predators, express their 
changes as a transformation. 

Ex. 12: (Continued.) What is the operand of this transformation? 

Ex. 13: (Continued.) If the state was initially (150, I 0), find how it changed over 
the first four days. 

Ex. 14: A certain pendulum swings approximately in accordance with the trans
formationx' = ll2(x-y),y' = 1/2(x + y), where xis its angular deviation from 
the vertical andy is its angular velocity; x' andy' are their values one second 
later. It starts from the state (10,10); find how its angular deviation changes 
from second to second over the first eight seconds. (Hint: find x', x", x"', etc.; 
can they be found without calculatingy', y", etc.?) 

Ex. 15: (Continued.) Draw an ordinary graph (with axes for x and t) showing how 
x's value changed with time. Is the pendulum frictionless? 

Ex. 16: In a certain economic system a new law enacts that at each yearly read
justment the wages shall be raised by as many shillings as the price index 
exceeds 100 in points. The economic effect of wages on the price index is 
such that at the end of any year the price index has become equal to the wage 
rate at the beginning of the year. Express the changes of wage-level and 
price-index over the year as a transformation. 

Ex. 17: (Continued.) If this year starts with the wages at 110 and the price index 
at II 0, find what their values will be over the next ten years. 

Ex. 18: (Continued.) Draw an ordinary graph to show how prices and wages will 
change. Is the law satisfactory? 
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Ex. 19: (Continued.) The system is next changed so that its transformation 
becomes x' = 112(x + y), y = 1!2(x-y) + I 00. It starts with wages and prices 
both at 110. Calculate what will happen over the next ten years. 

Ex. 20: (Continued.) Draw an ordinary graph to show how prices and wages will 
change. 

Ex. 21: Compare the graphs ofExs. 18 and 20. How would the distinction be 
described in the vocabulary of economics? 

Ex. 22: If the system of Ex. 19 were suddenly disturbed so that wages fell to 80 
and prices rose to 120, and then left undisturbed, what would happen over 
the next ten years? (Hint: use (80,120) as operand.) 

Ex. 23: (Continued.) Draw an ordinary graph to show how wages and prices 
would change after the disturbance. 

Ex. 24: Is transformation Tone-one between the vectors (x1, x2) and the vectors 
(xi'• Xz')? 

(Hint: If(x1, x2) is given, is (x1', x2') uniquely determined? And vice versa?) 
*Ex. 25: Draw the kinematic graph of the 9-state system whose components are 

residues: 
x' =x+ y 
y'=y+2 

How many basins has it ? 

l (Mod 3) 

3/7. (This section may be omitted.) The previous section is offun
damental importance, for it is an introduction to the methods of 
mathematical physics, as they are applied to dynamic systems. 
The reader is therefore strongly advised to work through all the 
exercises, for only in this way can a real grasp of the principles be 
obtained. If he has done this, he will be better equipped to appre
ciate the meaning of this section, which summarises the method. 

The physicist starts by naming his variables-x~> x2, ... xn. The 
basic equations of the transformation can then always be obtained 
by the following fundamental method:-

(1) Take the first variable, x1, and consider what state it will 
change to next. If it changes by finite steps the next state will be 
x 1' if continuously the next state will be x 1+ dx1• (In the latter case 
he may, equivalently, consider the value of dx/dt.) 

(2) Use what is known about the system, and the laws of phys
ics, to express the value of x 1', or dx/dt (i.e. what x1 will be) in 
terms of the values thatx1, ••• , xn (and any other necessary factors) 
have now. In this way some equation such as 

x1' = 2ax1 -x3 or dx/dt = 4k sin x3 

is obtained. 
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(3) Repeat the process for each variable in turn until the whole 
transformation is written down. 

The set of equations so obtained-giving, for each variable in 
the system, what it will be as a function of the present values of 
the variables and of any other necessary factors-is the canonical 
representation of the system. It is a standard form to which all 
descriptions of a determinate dynamic system may be brought. 

If the functions in the canonical representation are all linear, the 
system is said to be linear. 

Given an initial state, the trajectory or line of behaviour may 
now be computed by finding the powers of the transformation, as 
in S.3/9. 

*Ex. 1: Convert the transformation (now in canonical form) 
dx/dt= y 
dyldt=z 
dzldt = z + 2xy-x2 

to a differential equation of the third order in one variable, x. (Hint: Elimi
nate y and z and their derivatives.) 

*Ex. 2: The equation of the simple harmonic oscillator is often written 

d 2x -+ax= 0 
dt 2 

Convert this to canonical form in two independent variables. (Hint: Invert 
the process used in Ex. 1.) 

*Ex. 3: Convert the equation 

d 2x 2 dx 2 x--(l-x )-+-- = 0 
dt2 dt I+ x2 

to canonical form in two variables. 

3/8. After this discussion of differential equations, the reader who 
is used to them may feel that he has now arrived at the "proper" 
way of representing the effects of time, the arbitrary and discrete 
tabular form ofS.2/3 looking somewhat improper at first sight. He 
should notice, however, that the algebraic way is a restricted way, 
applicable only when the phenomena show the special property of 
continuity (S.7/20). The tabular form, on the other hand, can be 
used always; for the tabular form includes the algebraic. This is of 
some importance to the biologist, who often has to deal with phe
nomena that will not fit naturally into the algebraic form. When 
this happens, he should remember that the tabular form can always 
provide the generality, and the rigour, that he needs. The rest of 
this book will illustrate in many ways how naturally and easily the 
tabular form can be used to represent biological systems. 
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3/9. "Unsolvable" equations. The exercises to S.3/6 will have 
shown beyond question that if a closed and single-valued transfor
mation is given, and also an initial state, then the trajectory from 
that state is both determined (i.e. single-valued) and can be found 
by computation For if the initial state is x and the transformation 
T, then the successive values (the trajectory) ofx is the series 

x, T(x), T2(x), T3(x), r4lx), and so on. 

This process, of deducing a trajectory when given a transforma
tion and an initial state, is, mathematically, called "integrating" 
the transformation (The word is used especially when the trans
formation is a set of differential equations, as in S.317; the process 
is then also called "solving" the equations.) 

If the reader has worked all through S.3/6, he is probably 
already satisfied that, given a transformation and an initial state, 
he can always obtain the trajectory. He will not therefore be dis
couraged if he hears certain differential equations referred to as 
"nonintegrable" or "unsolvable". These words have a purely tech
nical meaning, and mean only that the trajectory cannot be 
obtained i f one is restricted to certain defined mathematical oper
ations. Tustin's Mechanism of Economic Systems shows clearly 
how the economist may want to study systems and equations that 
are of the type called "unsolvable"; and he shows how the econo
mist can, in practice get what he wants. 

3/10. Phase space. When the components of a vector are numerical 
variables, the transformation can be shown in geometric form, and 
this form sometimes shows certain properties far more clearly and 
obviously than the algebraic forms that have been considered so far. 

As example of the method, consider the transformation 
x' = 1/2.x + 1/2y 
y' = 1/2.x + 1/2y 

of Ex. 3/617. If we take axes x andy, we can represent each partic
ular vector, such as (8,4), by the point whose x-co-ordinate is 8 
and whose y- co-ordinate is 4. The state of the system is thus rep
resented initially by the point P in Fig. 3/1 0/l (I). 

The transformation changes the vector to (6,6), and thus changes 
the system's state toP'. The movement is, of course, none other than 
the change drawn in the kinematic graph of 8.2/17, now drawn in a 
plane with rectangular axes which contain numerical scales. This 
two- dimensional space, in which the operands and transforms can 
be represented by points, is called the phase-space of the system. 
(The "button and string" freedom ofS.2/17 is no longer possible.) 
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In II of the same figure are shown enough arrows to specifY 
generally what happens when any point is transformed. Here the 
arrows show the other changes that would have occurred had 
other states been taken as the operands. It is easy to see, and to 
prove geometrically, that all the arrows in this case are given by 
one rule: with any given point as operand, run the arrow at 45° up 
and to the left (or down and to the right) till it meets the diagonal 
represented by the line y = x. 

10 ~ 

I 
I 

0 lb c tb 

Fig. 3110/1 

The usefulness of the phase-space (II) can now be seen, for the 
whole range of trajectories in the system can be seen at a glance, fro
zen, as it were, into a single display. In this way it often happens that 
some property may be displayed, or some thesis proved, with the 
greatest ease, where the algebraic form would have been obscure. 

Such a representation in a plane is possible only when the vec
tor has two components. When it has three, a representation by a 
three- dimensional model, or a perspective drawing, is often still 
useful. When the number of components exceeds three, actual 
representation is no longer possible, but the principle remains, and 
a sketch representing such a higher-dimensional structure may 
still be most useful, especially when what is significant are the 
general topological, rather than the detailed, properties. 

(The words "phase space" are sometimes used to refer to the 
empty space before the arrows have been inserted, i.e. the space 
into which any set of arrows may be inserted, or the diagram, such 
as II above, containing the set of arrows appropriate to a particular 
transformation. The context usually makes obvious which is 
intended.) 
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Ex.: Sketch the phase-spaces, with detail merely sufticient to show the main fea
tures, of some ofthe systems in S.3/4 and 6. 

3/11. What is a "system"? In S.3/1 it was stated that every real 
determinate machine or dynamic system corresponds to a closed, 
single-valued transformation; and the intervening sections have 
illustrated the thesis with many examples. It does not, however, 
follow that the correspondence is always obvious; on the contrary, 
any attempt to apply the thesis generally will soon encounter cer
tain difficulties, which must now be considered. 

Suppose we have before us a particular real dynamic system
a swinging pendulum, or a growing culture of bacteria, or an auto
matic pilot, or a native village, or a heart-lung preparation-and 
we want to discover the corresponding transformation, starting 
,from the beginning and working from first principles. Suppose it 
is actually a simple pendulum, 40 em long. We provide a suitable 
recorder, draw the pendulum through 30° to one side, let it go, and 
record its position every quarter-second. We find the successive 
deviations to be 30° (initially), 10°, and -24° (on the other side). 
So our first estimate of the transformation, under the given condi
tions, is 

I 30° 10° 
-¥ 10° -24° 

Next, as good scientists, we check that transition from 10°: we 
draw the pendulum aside to 10°, let it go, and find that, a quar
ter-second later, it is at +3°! Evidently the change from 10° is not 
single-valued-the system is contradicting itself. What are we to 
do now? 

Our difficulty is typical in scientific investigation and is funda
mental: we want the transformation to be single-valued but it will 
not come so. We cannot give up the demand for singleness, for to 
do so would be to give up the hope of making single-valued pre
dictions. Fortunately, experience has long since shown what s to 
be done: the system must be re-defined. 

At this point we must be clear about how a "system" is to be 
defined Our first impulse is to point at the pendulum and to "the 
system is that thing there". This method, however, has a funda
mental disadvantage: every material object contains no less than 
an infinity of variables and therefore of possible systems. The real 
pendulum, for instance, has not only length and position; it has 
also mass, temperature, electric conductivity, crystalline struc
ture, chemical impurities, some radio-activity, velocity, reflecting 
power, tensile strength, a surface film of moisture, bacterial con-
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tamination, an optical absorption, elasticity, shape, specific grav
ity, and so on and on. Any suggestion that we should study "all" 
the facts is unrealistic, and actually the attempt is never made. 
What is try is that we should pick out and study the facts that are 
relevant to some main interest that is already given. 

The truth is that in the world around us only certain sets of facts 
are capable of yielding transformations that are closed and single. 
The discovery of these sets is sometimes easy, sometimes diffi
cult. The history of science, and even of any single investigation, 
abounds in examples. Usually the discovery involves the other 
method for the defining of a system, that of listing the variables 
that are to be taken into account. The system now means, not a 
but a list of variables. This list can be varied, and the experi
menter's commonest task is that of varying the list ("taking other 
variables into account") until he finds a set of variables that he 
required singleness. Thus we first considered the pendulum as if 
it consisted solely of the variable "angular deviation from the ver
tical"; we found that the system so defined did not give single
ness. If we were to go on we would next try other definitions, for 
instance the vector: 

(angular deviation, mass ofbob), 

which would also be found to fail. Eventually we would try the 

(angular deviation, angular velocity) 

and then we would find that these states, defined in this way, 
would give the desired singleness (cf. Ex. 3/6/14). 

Some of these discoveries, of the missing variables, have been 
of major scientific importance, as when Newton discovered the 
importance of momentum, or when Gowland Hopkins discovered 
the importance of vitamins (the behaviour of rats on diets was not 
single-valued until they were identified). Sometimes the discovery 
is scientifically trivial, as when single-valued results are obtained 
only after an impurity has been removed from the water-supply, or 
a loose screw tightened; but the singleness is always essential. 

(Sometimes what is wanted is that certain probabilities shall be 
single-valued. This more subtle aim is referred to in S.7/4 and 9/ 
2. It is not incompatible with what has just been said: it merely 
means that it is the probability that is the important variable, not 
the variable that is giving the probability. Thus, if I study a rou
lette-wheel scientifically I may be interested in the variable 
"probability of the next throw being Red", which is a variable 
that has numerical values in the range between 0 and 1, rather than 

40 



THE DETERMINATE MACHINE 

in the variable "colour of the next throw", which is a variable that 
has only two values: Red and Black. A system that includes the 
latter variable is almost certainly not predictable, whereas one that 
includes the former (the probability) may well be predictable, for 
the probability has a constant value, of about a half.) 

The "absolute" system described and used in Design for a Brain 
is just such a set of variables. 

It is now clear why it can be said that every determinate 
dynamic system corresponds to a single-valued transformation (in 
spite of the fact that we dare not dogmatise about what the real 
world contains, for it is full of surprises). We can make the state
ment simply because science refuses to study the other types, such 
as the one-variable pendulum above, dismissing them as "cha
otic" or "non-sensical". It is we who decide, ultimately, what we 
will accept as "machine-like" and what we will reject. (The sub
ject is resumed in S.6/3.) 
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Chapter 4 

THE MACHINE WITH INPUT 

4/1. In the previous chapter we studied the relation between trans
formation and machine, regarding the latter simply as a unit. We 
now proceed to find, in the world of transformations, what corre
sponds to the fact that every ordinary machine can be acted on by 
various conditions, and thereby made to change its behaviour, as 
a crane can be controlled by a driver or a muscle controlled by a 
nerve. For this study to be made, a proper understanding must be 
had of what is meant by a "parameter". 

So far, each transformation has been considered by itself; we 
must now extend our view so as to consider the relation between 
one transformation and another. Experience has shown that just the 
same methods (as S.2/3) applied again will suffice; for the change 
from transformation A to transformation B is nothing but the transi
tionA ~B. (In S.2/3 it was implied that the elements of a transfor
mation may be anything that can be clearly defined: there is 
therefore no reason why the elements should not themselves be 
transformations.) Thus, if T1, T2, and T3 are three transformations, 
there is no reason why we should not define the transformation U: 

U t TI T2 T3 
. T2 T2 Tl 

All that is necessary for the avoidance of confusion is that the 
changes induced by the transformation T1 should not be allowed 
to become confused with those induced by U; by whatever 
method is appropriate in the particular case the two sets of 
changes must be kept conceptually distinct. 

An actual example of a transformation such as U occurs when 
boy has a toy-machine T1 built of interchangeable parts, and the 
dismantles it to form a new toy-machine T2 • (In this case the 
changes that occur when T1 goes from one of its states to the next 
(i.e. when T1 "works") are clearly distinguishable from the change 
that occurs when T1 changes to T2.) 

Changes from transformation to transformation may, in general 
be wholly arbitrary. We shall, however, be more concerned with 
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the special case in which the several transformations act on the 
same set of operands. Thus, if the four common operands are a, b, 
c, and d, there might be three transformations, R1, R2, and R3: 

iabcd iabcd iabcd 
R,: t c d d b R2: t b a d c R3: t d c d b 

These can be written more compactly as 

a b c d 

Rl c d d b 
R2 b a d c 
R3 d c d b 

which we shall use as the standard form. (In this chapter we shall 
continue to discuss only transformations that are closed and sin
gle-valued.) 

A transformation corresponds to a machine with a characteris
tic way of behaving (S.3/1); so the set ofthree-R1, R2, and R3-

if embodied in the same physical body, would have to correspond 
to a machine with three ways of behaving. Can a machine have 
three ways of behaving? 

It can, for the conditions under which it works can be altered. 
Many a machine has a switch or lever on it that can be set at any 
one of three positions, and the setting determines which of three 
ways of behaving will occur. Thus, if a, etc., specify the machine's 
states, and R 1 corresponds to the switch being in position 1, and R2 
corresponds to the switch being in position 2, then the change of 
R 's subscript from 1 to 2 corresponds precisely with the change of 
the switch from position 1 to position 2; and it corresponds to the 
machine's change from one way of behaving to another. 

It will be seen that the word "change" if applied to such a 
machine can refer to two very different things. There is the change 
from state to state, from a to b say, which is the machine's behav
iour, and which occurs under its own internal drive, and there is 
the change from transformation to transformation, from R1 to R2 
say, which is a change of its way of behaving, and which occurs 
at the whim of the experimenter or some other outside factor. The 
distinction is fundamental and must on no account be slighted. 

R's subscript, or any similar symbol whose value determines 
which transformation shall be applied to the basic states will be 
called a parameter. If numerical, it must be carefully distin
guished from any numbers that may be used to specify the oper
ands as vectors. 
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A real machine whose behaviour can be represented by such a 
set of closed single-valued transformations will be called a trans
ducer or a machine with input (according to the convenience of 
the context). The set of transformations is its canonical represen
tation. The parameter, as something that can vary, is its input. 

Ex. 1: lf S is ~ % ~ , 

how many other closed and single-valued transformations can be formed on 
the same two operands? 

Ex. 2: Draw the three kinematic graphs of the transformations R 1, R2, and R3 

above. Does change of parameter-value change the graph? 
Ex. 3: With R (above) at R 1, the representative point is started at c and allowed 

to move two steps (to R12(c)); then, with the representative point at this new 
state, the transformation is changed to R2o and the point allowed to move two 
more steps. Where is it now? 

Ex. 4: Find a sequence of R's that will take the representative point (i) from d to 
a, (ii) from c to a. 

Ex. 5: What change in the transformation corresponds to a machine having one 
of its variables fixed? What transformation would be obtained if the system 

x' =-x+ 2y 
y'=x-y 

were to have its variable x fixed at the value 4? 
Ex. 6: Form a table of transformations affected by a parameter, to show that a 

parameter, though present, may in fact have no actual effect. 

4/2. We can now consider the algebraic way of representing a 
transducer. 

The three transformations 

R1: n' = n + 1 R2 : n' = n + 2 R3 : n' = n + 3 

can obviously be written more compactly as 

Ra: n' =n+a, 

and this shows us how to proceed. In this expression it must be 
noticed that the relations of nand a to the transducer are quite dif
ferent, and the distinction must on no account be lost sight of. n is 
operand and is changed by the transformation; the fact that it is an 
operand is shown by the occurrence of n '. a is parameter and 
determines which transformation shall be applied to n. a must 
therefore be specified in value before n 's change can be found. 

When the expressions in the canonical representation become 
more complex, the distinction between variable and parameter 
can be made by remembering that the symbols representing the 
operands will appear, in some form, on the left, as x' or dx/dt; for 
the transformation must tell what they are to be changed to. So all 
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quantities that appear on the right, but not on the left, must be 
parameters. The examples below will clarify the facts. 

Ex. 1: What are the three transformations obtained by giving parameter a the val
ues-1,0,or+l inTa: 

T ·1 g'=(1-a)g+(a-l)h 
a · h' = 2g + 2ah 

Ex. 2: What are the two transformations given when the parameter a takes the 
value 0 or I in S?: 

S: 1 h' =(I - a)j + log (I + a+ sin ah) 
j' =(I + sin aj) e<a-!)h 

Ex. 3: The transducer n' = n + a2, in which a and n can take only positive integral 
values, is started at n = 10. (i) At what value should a be kept if, in spite of 
repeated transformations, n is to remain at 1 0? (ii) At what value should a be 
kept if n is to advance in steps of 4 at a time (i.e. 10, 14 18, ... )? (iii) What 
values of a, chosen anew at each step, will make n follow the series I 0, 11, 
15, 16, 20, 21, 25, 26, ... , in which the differences are, alternately 1 and 4? 
(iv) What values of a will make n advance by unit steps to 100 and then jump 
directly to 200? 

Ex. 4: If a transducer has n operands and also a parameter that can take n values, 
the set shows a triunique correspondence between the values of operand, 
transform, and parameter if (1) for given parameter value the transformation 
is one-one, and (2) for given operand the correspondence between parame
ter-value and transform is one-one. Such a set is 

a b c d 

R! c d a b 
Rz b a c d 
R3 d c b a 
R4 a b d c 

Show that the transforms must form a Latin square, i.e. one in which each 
row (and each column) contains each transform once and once only. 

Ex. 5: A certain system of one variable Vbehaves as 

V' = _!_(v + 90) 
10 p 

where Pis a parameter. Set Pat some value P 1, e.g. 10, and find the limit 
that V tends to as the transformation is repeated indefinitely often, call this 
limit V1• Then set P at another value P2, e.g. 3, and find the corresponding 
limit V2• After several such pairs of values (of P and limit-V) have been 
found, examine them to see if any law holds between them. Does Vbehave 
like the volume of a gas when subjected to a pressure P? 

Ex. 6: What transformation, with a parameter a will give the three series of val
ues ton?: 

a= I: 0, ---+ I, ---+ 2, ---+ 3, ---+ 4, .. . 
a= 2: 0, ---+ 4, ---7 8, ---7 12, ---7 16, .. . 
a= 3: 0, ---7 9, ---7 18, ---7 27, ---7 36, .. . 

(Hint: try some plausible expressions such as n'- n +a, n' = a2n, etc.) 
Ex. 7: If n' = n + 3a, does the value given to a determine how large is n' s jump 

at each step? 
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4/3. When the expression for a transducer contains more than one 
meter, the number of distinct transformations may be as large e 
number of combinations of values possible to the parameters each 
combination may define a distinct transformation), but never 
exceed it. 

Ex. l: Find all the transformations in the transducer Uab when a can take the val
ues 0, 1, or 2, and b the values 0 or l. 

I s' = ( l - a )s + abt 
Uab: 1 t' =(I+ b)t+ (b-l)a 

How many transformations does the set contain? 
Ex. 2: (continued.) if the vector (a, b) could take only the values (0,1), (1n1), and 

(2,0), how many transformations would the transducer contain? 
Ex. 3: The transducer Tab• with variables p and q:fp = ap + bq 

T . j p' = ap + bq 
ab . q' = bp + aq 

is started at (3,5). What values should be given to the parameters a and if 
(p,q) is to move, at one step, to (4,6)? (Hint: the expression for I;,b can be 
regarded as a simultaneous equation.) 

Ex. 4: (Continued.) Next find a value for (a, b) that will make the system move, 
in one step, back from ( 4,6) to (3,5). 

Ex. 5: The transducer n' = abn has parameters a and b, each of which can take 
any of the values o, 1, and 2. How many distinct transformations are there? 
(Such indistinguishable cases are said to be "degenerate"; the rule given at 
the beginning of this section refers to the maximal number o transformations 
that are possible; the maximal number need not always be achieved). 

4/4. Input and output. The word "transducer" is used by the phys
icist, and especially by the electrical engineer, to describe any 
determinate physical system that has certain defined places of 
input, which the experimenter may enforce changes that affect its 
behaviour, and certain defined places of output, at which he 
observes changes of certain variables, either directly or through 
suitable instruments. It will now be clear that the mathematical 
system described in S.4/l is the natural representation of such a 
material system. It will also be clear that the machine's "input" 
corresponds he set of states provided by its parameters; for as the 
parameters input are altered so is the machine's or transducer's 
behaviour affected. 

With an electrical system, the input is usually obvious and 
restricted to a few terminals. In biological systems, however, the 
number of parameters is commonly very large and the whole set of 
them is by no means obvious. It is, in fact, co-extensive with the 
set of "all variables whose change directly affects the organism". 
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The parameters thus include the conditions in which the organism 
lives. In the chapters that follow, the reader must therefore be pre
pared to interpret the word "input" to mean either the few parame
ters appropriate to a simple mechanism or the many parameters 
appropriate to the free-living organism in a complex environment. 
(The increase in the number of parameters does not necessarily 
imply any diminution in the rigour of the argument, for all the 
quantities concerned can be measured with an accuracy that is 
bounded only by the experimenter's resources of time and money.) 

Ex. 1: An electrical machine that receives potentials on its two input- terminals 
is altered by having the two terminals joined permanently by a wire. To what 
alteration in Tab would this correspond if the machine were represented as in 
Ex. 4/3/3. 

Ex. 2: "When an organism interacts with its environment, its muscles are the 
environment's input and Its sensory organs are the environment's output." 
Do you agree ? 

4/5. Transient. The electrical engineer and the biologist tend to test 
their systems by rather different methods. The engineer often 
investigates the nature of some unknown system by submitting it 
to an incessant regular change at its input while observing its out
put. Thus, in Fourier analysis, he submits it to prolonged stimula
tion by a regular sinusoidal potential of a selected frequency, and 
he observes certain characteristics in the output; then he repeats the 
test with another frequency, and so on; eventually he deduces 
something of the system's properties from the relations between 
the input-frequencies and the corresponding output-characteristics. 
During this testing, the machine is being disturbed incessantly. 

The biologist often uses a method that disturbs the system not at 
all, after the initial establishment of the conditions. Thus he may cut 
a piece of meat near an ants' colony and then make no further 
change whatever-keeping the conditions, the parameters, con
stant-while watching the whole evolution of the complex patterns 
of behaviour, individual and social, that develop subsequently. 

Contrary to what is observed in living systems, the behaviour of 
mechanical and electrical systems often settles to some uniformity 
fairly quickly from the moment when incessant change at the input 
stops. The response shown by the machine after some disturbance, 
the input being subsequently held constant, is called a transient. It is 
important to appreciate that, to the engineer, the complex sequence 
of events at the ants' nest is a transient. It may be defined in more 
general terms as the sequence of states produced by a transducer in 
constant conditions before the sequence starts repeating itself. 
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To talk about the transient, as distinct from the repetitive part 
that follows, it is convenient to be able to mark, unambiguously, 
its end. If the transformation is discrete, the following method 
gives its length rigorously: Let the sequence of states go on till 
repetition becomes evident, thus 

A B C DC DC DC DC ... or HE F G G G G G G G ... 

Then, coming in from the right, make the mark "I" as soon as the 
sequence departs from the cycle, thus 

A B 1 C D CDC D CD C ... or HE F1 G G G G G G G ... 

Next add the mark "2", to the right of I, to include one complete 
cycle, thus 

A B1 C 0 2 CDC DC DC ... or HE F1 G2 G G G G G G G ... 

Then the transient is defined as the sequence of states from the 
initial state to the mark 2: ABC D, or HE F G. 

Rigorous form can now be given to the intuitive impression that 
complex systems can produce, in constant conditions, more com
plex forms of behaviour than can the simple. By drawing an arbi
trary kinematic graph on N states it is easy to satisfy oneself that 
if a closed single-valued transformation with N operands is 
applied repeatedly, then the length of transient cannot exceed N 
states. 

Ex. 1: What property must the graph have if the onset of a recurrence is to be 
postponed as long as possible? 

Ex. 2: What is the transient of the system of Ex. 3/6/6, started from the state 
(8,5)? 

COUPLING SYSTEMS 

4/6. A fundamental property of machines is that they can be cou
pled. Two or more whole machines can be coupled to form one 
machine; and any one machine can be regarded as formed by the 
coupling of its parts, which can themselves be thought of as small, 
sub-, machines. The coupling is of profound importance in sci
ence, for when the experimenter runs an experiment he is cou
pling himself temporarily to the system that he is studying. To 
what does this process, the joining of machine to machine or of 
part to part, correspond in the symbolic form of transformations? 
Of what does the operation of"coupling" consist? 

Before proceeding to the answer we must notice that there is 
more than one answer. One way is to force them roughly together, 
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so that they become "coupled" as two automobiles may be locked 
together after an accident. This form, however, is of little interest 
to us, for the automobiles are too much changed by the process. U 
flat we want is a way of coupling that does no violence to each 
machine's inner working, so that after the coupling each machine 
is ,till the same machine that it was before. 

For this or this to be so, the coupling must be arranged so that, in 
principlen each machine affects the other only by affecting its con
ditions, i. e. by, affecting its input. Thus, if the machines are to 
retain their individual natures after being coupled to form a whole, 
the coupling must be between the (given) inputs and outputs, other 
parts being left alone no matter how readily accessible they may be. 

4/7. Now trace the operation in detail. Suppose a machine (trans
ducer) P is to be joined to another, R. For simplicity assume that 
P is going to affect R, without R affecting P, as when a micro
phone is joined to an amplifier, or a motor nerve grows down to 
supply an embryonic muscle. We must couple P's output toR's 
input. Evidently R 's behaviour, or more precisely the transforma
tion that describes R 's changes of state, will depend on, and 
change with, the state of P. It follows that R must have parame
ters, for input, and the values of these parameters must be at each 
moment some function of the state ofP. Suppose for definiteness 
that the machine or transducer R has the three transformations 
shown in S 4/1, i.e. 

a b c d 

RI c d d b 
R2 b a d c 
R3 d c d b 

and that P has the transformation, on the three states i, j, k: 

. i j k 
P. ~ k i i 

P and R are now to be joined by our specifYing what value R 's 
parameter, call it x, is to take when P has any one of its states. 
Suppose we decide on the relation Z (a transformation, single-val
ued but not closed): 

z· { state of P: 1 i j k 
· value of a: t 2 3 2 

(The relation between P and a has been made somewhat irregular 
to emphasise that the details are quite arbitrary and are completely 
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under the control of whoever arranges the coupling.) Let us fur
ther suppose-this is essential to the orderliness of the coupling
that the two machines P and R work on a common time-scale, so 
that their changes keep in step. 

It will now be found that the two machines form a new machine 
of completely determined behaviour. Thus, suppose the whole is 
started with Rat a and Pat i. Because Pat i., the R- transformation 
will be R2 (by Z). This will turn a to b; P 's i will turn to k; so the 
states a and i have changed determinately to b and k. The argu
ment can now be repeated. With Pat k, the R-transformation will 
again (by Z) be R2 ; sob will turn (under R2 ) to a, and k will turn 
(under P) to i. This happens to bring the whole system back to the 
initial state of (a,i), so the whole will evidently go on indefinitely 
round this cycle. 

The behaviour of the whole machine becomes more obvious if 
we use the method of S.3/5 and recognise that the state of the 
whole machine is simply a vector with two components (x,y), 
where x is one of a, b, c, d and y is one of i, j, k. The whole 
machine thus has twelve states, and it was shown above that the 
state (a,i) undergoes the transitions 

(a,i) ---? (b,k) ---? (a,i) ---?etc. 

Ex. I: If Q is the transformation ofthe whole machine, of the twelve states (x,y), 
complete Q. 

Ex. 2: Draw Q's kinematic graph. How many basins has it? 
Ex. 3: Join P and R by using the transformation Y 

y. j state of P: ~ i j k 
· value of a: I 2 3 

What happens when this machine is started from (a,i)? 
Ex. 4: If two machines are joined to form a whole, does the behaviour of the 

whole depend on the manner of coupling? (Hint: use the previous Ex.) 
Ex. 5. If two machines ofn1 and n2 states respectively are joined together, what 

is the maximal length of transient that the whole can produce? 
Ex. 6: If machine M has a maximal length of transient of n states, what will be 

the maximal length of transient if a machine is formed by joining three M' s 
together? 

Ex. 7: Take many parts (A, B, C, .. .) each with transformation 
t 0 I 2 
a 
~ 1 1 1 
y 2 2 2 
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and join them into a single long chain 

input ~~~ ~~~etc., 

so that A affects B, B affects C, and so on, by Z: 
Z: t 0 1 2 

a f3 r 
If the input to A is kept at a, what happens to the states down the chain? 

Ex. 8: (Continued.) What happens if the input is now changed for one step to~ 
and then returned to a, where it is held? 

4/8. Coupling with feedback. In the previous section, P was cou
pled toR so that P 's changes affected, or determined in some way, 
what R 's changes would be, but P 's changes did not depend on 
what state R was at. Two machines can, however, be coupled so 
that each affects the other. 

For this to be possible, each must have an input, i.e. parameters. 
P had no parameters, so this double coupling cannot be made 
directly on the machines of the previous section. Suppose, then, 
that we are going to coupleR (as before) to S, given below: 

a b c d e f 

Rl c d d b s, f f 
R2 b a d c s2 e f 
R3 d c d b s3 f f 

s4 f e 

S could be coupled to affect R by Y(if R 's parameter is a): 

y. { state of S: I e f 
· value of a: + 3 1 

and R to affectS by X (if S's parameter is~): 

X: { state of R: ~ a b c d 
· value of /3: 3 1 1 2 

To trace the changes that this new whole machine (call it T) will 
undergo, suppose it starts at the vector state (a, e). By Y and X, the 
transformations to be used at the first step are R3 and S3. They, act
ing on a and e respectively, will give d and_{; so the new state of 
the whole machine is (d,j). The next two transformations will be 
R1 and S2, and the next state therefore {b,j); and so on. 

Ex. 1: Construct T's kinematic graph. 
Ex. 2: CoupleS and R in some other way. 
Ex. 3: Couple S and R so that S atJects R but R does not affect S. (Hint: Consider 

the effect in X of putting all the values of~ the same. 
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4/9. Algebraic coupling. The process of the previous sections, by 
treating the changes that each state and parameter undergo indi
vidually, shows the relations that are involved in "coupling" with 
perfect clarity and generality. Various modifications can be devel
oped without any loss of this clarity. 

Thus suppose the machines are specified, as is common, in 
terms of vectors with numerical components; then the rule for 
coupling remains unaltered: each machine must have one or more 
parameters, and the coupling is done by specifYing what function 
these parameters are to be of the other machine's variables. Thus 
the machines M and N 

M· J a' = a2 + pb 
·l b' =-qa 

r 
N:i 

l 

c' =rsc + ud2 

d =2tue 

e' = uce 

might be joined by the transformations U and V: 

s=a-b p =2c 
q =de2 

{ 
r =a+ b 

V: t =-a 

u =b2 

U is a shorthand way of writing a whole set of transitions from a 
value of (c,d,e) to a value of (p,q), e.g. 

u t (0,0,0) (0,0,1) (1,3,5) (2,2,4) 
' (0,0) (0,0) (2,75) (4,32) 

Similarly for V, a transformation from (a,b) to (r,s,t,u), which 
includes, e.g. (5,7) ~ (12, -2, -5, 49) (and compare P ofS.6/9). 

The result of the coupling is the five-variable system with rep
resentation: 

a' =d + 2bc 
b' =-ade2 

c' = (a2 - b2)c + b2d2 

d -2ab2e 
e' = b2ce 

(Illustrations of the same process with differential equations have 
been given in Design for a Brain, S.21/6) 

Ex. 1.: Which are the parameters in M? Which in N? 
Ex. 2.: Join M and N by Wand X, and find what state (I, 0, 0, I, 0), a value of (a, 

b, c, d, e), will change to: 

{
r = a 

W: l p = d X: s = ab 
tq=c t=a 

u =a 
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4/10. Ex. 41714 has already shown that parts can, in general, be 
coupled in different ways to form a whole. The defining of the 
component parts does not determine the way of coupling 

From this follows an important corollary. That a whole machine 
should be built of parts of given behaviour is not sufficient to 
determine its behaviour as a whole: only when the details of cou
pling are added does the whole's behaviour become determinate. 

FEEDBACK 

4/11. In S.4/7, P and R were joined so that P affected R while R 
had no effect on P. Pis said to dominate R, and (to anticipate S.4/ 
12) we may represent the relation between the parts by 

~--7~ 
(The arrow cannot be confused with that used to represent a tran
sition (S.2/2), for the latter always relates two states, whereas the 
arrow above relates two parts. In the diagrams to come, parts will 
always be shown boxed.) 

Cybernetics is, however, specially interested in the case of S.4/8 
where each affects the other, a relation that may be represented by 

~~~ 
When this circularity of action exists between the parts of a 
dynamic system, feedback may be said to be present. 

The definition of feedback just given is that most in accord with 
the spirit of this book, which is concerned essentially with princi
ples. 

Other definitions, however, are possible, and there has been 
some dispute as to the best; so a few words in explanation may be 
useful. There are two main points of view that have to be consid
ered. 

On the one side stand those who are following the path taken by 
this book-those whose aim is to get an understanding of the prin
ciples behind the multitudinous special mechanisms that exhibit 
them To such workers, "feedback" exists between two parts when 
each affects the other, as for instance, in 

x' =2xy 
y'=x-i 

for y' s value affects how x will change and so does x' s value affect 
y. By contrast, feedback would not be said to be present in 

x' =2x 
y' =x-i 

53 



AN INTRODUCTION TO CYBERNETICS 

for x's change does not now depend ony's value; x dominatesy, 
and the action is one way only. 

On the other side stand the practical experimenters and con
structors, who want to use the word to refer, when some forward 
effect from P to R can be taken for granted, to the deliberate con
duction of some effect back from R to P by some connexion that 
i; physically or materially evident. They object to the mathemati
cian's definition, pointing out that this would force them to say 
that feed back was present in the ordinary pendulum (see Ex. 3/6/ 
14) between its position and its momentum-a "feedback" that, 
from the practical point of view, is somewhat mystical. To this the 
mathematician retorts that if feedback is to be considered present 
only when there is an actual wire or nerve to represent it, then the 
theory becomes chaotic and riddled with irrelevancies. 

In fact, there need be no dispute, for the exact definition of 
"feedback" is nowhere important. The fact is that the concept of 
"feedback", so simple and natural in certain elementary cases, 
becomes artificial and of little use when the interconnexions 
between the parts become more complex. When there are only 
two parts joined so that each affects the other, the properties of the 
feedback give important and useful information about the proper
ties of the whole. But when the parts rise to even as few as four, 
if every one affects the other three, then twenty circuits can be 
traced through them; and knowing the properties of all the twenty 
circuits does not give complete information about the system. 
Such complex systems cannot be treated as an interlaced set of 
more or less independent feedback circuits, but only as a whole. 

For understanding the general principles of dynamic systems, 
therefore, the concept of feedback is inadequate in itself. What is 
important is that complex systems, richly cross-connected inter
nally, have complex behaviours, and that these behaviours can be 
goal-seeking in complex patterns. 

Ex. 1: Trace twenty circuits in the diagram of Fig. 4/1111: 

n>d 
D C 

Fig. 4/1111 
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Ex. 2: A machine with input a, has the transformation 

{ 
x' =y- az 

T: y' =2z 
z' =x +a 

What machine (as transformation) results if its input a is coupled to its out
put z, by a ~z? 

Ex. 3: (Continued.) will this second machine behave differently from the first 
one when the first has a held permanently at-1 ? 

Ex. 4: A machine has, among its inputs, a photoelectric cell; among its outputs a 
lamp of variable brightness. In Condition 1 there is no connexion from lamp 
to cell, either electrical or optical. In Condition 2 a mirror is placed so that 
variations in the lamp's brightness cause variations in the cell's potential (i.e. 
so that the machine can "see itself'). Would you expect the behaviours in 
Conditions 1 and 2 to differ? (Hint: compare with Ex. 3.) 

INDEPENDENCE WITHIN A WHOLE 

4/12. In the last few sections the concept of one machine or part 
or variable "having an effect on" another machine or part or vari
able has been used repeatedly. It must now be made precise, for it 
is of profound importance. What does it mean in terms of actual 
operations on a given machine? The process is as follows. 

Suppose we are testing whether part or variable i has an imme
diate effect on part or variable j. Roughly, we let the system show 
its behaviour, and we notice whether the behaviour of part j is 
changed when part i' s value is changed. If part j' s behaviour is 
just the same, whatever i's value, then we say, in general, that i 
has no effect onj. 

To be more precise, we pick on some one stateS (of the whole 
system) first. With i at some value we notice the transition that 
occurs in partj (ignoring those of other variables). We compare 
this transition with those that occur when states S1, S2o etc.--other 
than S-are used, in which S1, S2o etc. differ from S only in the 
value of the i-th component. If S1, S2o etc., give the same transition 
in partj asS, then we say that i has no immediate effect onj, and 
vice versa. ("Immediate" effect because we are consideringj's 
values over only one step of time.) 

Next consider what the concept means in a transformation. Sup
pose its elements are vectors with four components (u,x,y,z), and 
that the third line of the canonical equations reads 

y' = 2uy-z. 

This tells us that ify is at some value now, the particular value it 
will be at the next step will depend on what values u and z have, 
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but will not depend on what value x has. The variables u and z are 
said to have an immediate effect on y. 

It should be noticed, if the rig our is to be maintained, that the 
presence or absence of an immediate effect, of u on y say, can be 
stated primarily only for two given states, which must have the 
same values in their x, y, and z-components and must differ in 
their u-components. For an immediate effect at one pair of states 
does not, in general, restrict the possibilities at another pair of 
states. Thus, the transformation mentioned above gives the transi
tions: 

(0,0,0,0) ~ ( ' ,0, ) 
(1,0,0,0) ~ (' ,0,) 
(0,0,1,0) ~ (' ,0,) 
(1,0,1,0) ~ (' ,2,) 

(where irrelevant values have been omitted). The first two show 
that in one region of space u does not have an immediate effect on 
y, and the second two show that in another region it does. Strictly, 
therefore, the question "what is the immediate effect of u on y?" 
can be answered only for a given pair of states. Often, in simple 
systems, the same answer is given over the whole phase space; if 
this should happen we can then describe the immediate effect of 
u on y unconditionally. Thus in the example above, u has an 
immediate effect on y at all points but a particular few. 

This test, for u's immediate effect on y, simply does in symbols 
what the experimenter does when he wishes to test whether one 
variable has an immediate effect on another: he fixes all variables 
except this pair, and compares how one behaves when the other 
has a value u 1 with how it behaves when the other has the value u2. 

The same method is, in fact, used generally in everyday life. 
Thus, if we go into a strange room and wish to tum on the light, 
and find switches, our problem is to find which switches are and 
which are not having an effect on the light's behaviour. We 
change one of the switches and observe whether this is followed 
by a change in the light's behaviour. In this way we discover on 
which switch the light is dependent. 

The test thus accords with common sense and has the advantage 
of being applicable and interpretable even when we know nothing 
of the real physical or other factors at work. It should be noticed 
that the test requires no knowledge of extraneous factors: the 
result is deduced directly from the system's observed behaviour, 
and depends only on what the system does, not on why it does it. 

It was noticed above that a transducer may show any degree of 
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arbitrariness in the distribution of the immediate effects over the 
phase space. Often, however, the distribution shows continuity, so 
that over some appreciable region, the variable u, say, has an 
immediate effect on y while over the same region x has none. 
When this occurs, a diagram can often usefully be drawn showing 
these relations as they hold over the region (which may some
times be the whole phase-space). An arrow is drawn from u toy 
if and only if u has an immediate effect on y. Such a diagram will 
be called the diagram of immediate effects. 

Such diagrams are already of common occurrence. They are 
often used in physiology to show how a related set of variables 
(such as blood pressure, pulse rate, secretion of adrenaline, and 
activity at the carotid sinus) act on one another. In the design of 
computing machines and servomechanisms they are known as 
"control-flow charts". They are also used in some large busi
nesses to show the relations of control and information existing 
between the various departments. 

The arrow used in such a diagram is, of course, profoundly dif
ferent in meaning from the arrow used to show change in a tran
sition (S.2/2). In the latter case it means simply that one state 
changes to another; but the arrow in the diagram of immediate 
effects has a much more complex meaning. In this case, an arrow 
from A to B says that if, over a series of tests, A has a variety of 
different values-Band all other conditions starting with the same 
value throughout-then the values that B changes to over the 
series will also be found to show variety. We shall see later (S.8/ 
11) that this is simply to say that a channel of communication goes 
fromA to B. 

When a transducer is given, either in algebraic or real material 
form, we can examine the immediate effects within the system 
and thus deduce something of its internal organisation and struc
ture. In this study we must distinguish carefully between "imme
diate" and "ultimate" effects. In the test given above, the effect of 
x on y was considered over a single step only, and this restriction 
is necessary in the basic theory. x was found to have no immediate 
effect on y; it may however happen that x has an immediate effect 
on u and that u has an immediate effect on y, then x does have 
some effect on y, shown after a delay of one extra step. Such an 
effect, and those that work through even longer chains of vari
ables and with longer delay, will be referred to as ultimate 
effects. A diagram of ultimate effects can be constructed by 
drawing an arrow from A to B if and only if A has an ultimate 
effect on B. The two diagrams are simply related, for the diagram 
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of immediate effects, if altered by the addition of another arrow 
wherever there are two joined head to tail, turning 

and continuing this process until no further additions are possible, 
gives the diagram of ultimate effects. 

If a variable or part has no ultimate effect on another, then the 
second is said to be independent of the first. 

Both the diagrams, as later examples will show, have features 
corresponding to important and well-known features of the sys
tem they represent. 

Ex. 1: Draw the diagrams of immediate effects of the following absolute sys
tems; and notice the peculiarity of each: 

(i) x' = xy, y' = 2y. 
(ii) x' = y,y' =z + 3, z' =x2 . 

(iii) u' = 2 + ux, v' = v- y, x' = u + x, y' = y + v2. 

(iv) u' = 4u- 1, x' = ux, y' = xy + 1, z' = yz. 
(v) u' = u + y, x' = 1 - y, y' =logy, z' = z + yz. 
(vi) u' = sin2u,x' =x2,y' =y+ l,z' =xy+ u. 

Ex. 2: Ify' = 2uy- z, under what conditions does u have no immediate effect on 
y? 

Ex. 3: Find examples of real machines whose parts are related as in the diagrams 
of immediate effects of Ex. 1. 

Ex. 4: (Continued.) Similarly find examples in social and economic systems. 
Ex. 5: Draw up a table to show all possible ways in which the kinematic graph 

and the diagram of immediate effects are different. 

4/13. In the discussion of the previous section, the system was 
given by algebraic representation; when described in this form, 
the deduction of the diagram of immediate effects is easy. It 
should be noticed, however, that the diagram can also be deduced 
directly from the transformation, even when this is given simply 
as a set of transitions. 

Suppose, for instance that a system has two variables, x andy, 
each of which can take the values 0, 1 or 2, and that its (x,y)-states 
behave as follows (parentheses being omitted for brevity): 

00 01 02 10 11 12 20 21 22 
01 00 11 11 00 21 11 20 11 
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What of y's transitions? We can re-classify them, with x as 
parameter, by representing, e.g. "00 ---7 01" as "when x = 0, y goes 
from 0 to 1". This gives the table 

X 

y 
0 1 2 

0 0 

I 

2 

0 

0 

It shows at once that y's transitions do not depend on the value 
ofx. Sox has no immediate effect on y. 

Now classifY x's transitions similarly. We get: 
y 

0 1 2 

0 1 

X 0 0 2 
2 2 1 

What x will do (i.e. x's transition) does depend on y's value, soy 
has an immediate effect on x. 

Thus, the diagram of immediate effects can be deduced from a 
statement of the primary transitions. It is, in fact, 

0~0 
and y has been proved to dominate x. 

Ex.: A system has three variables-x, y, z-each of which can take only the val
ues 0 or 1. If the transformation is 

l 000 001 010 011 100 101 110 111 
110 Ill 100 101 110 011 100 001 

what is the diagram of immediate effects? (Hint: First find how z's transi
tions depend on the values of the others.) 

4/14. Reducibility. In S.4/11 we noticed that a whole system may 
consist of two parts each of which has an immediate effect on the 
other: 

~~[g] 
We also saw that the action may be only one way, in which case 
one part dominates the other: 

~~[g] 
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In this case the whole is less richly connected internally, for one 
of the actions, or channels, is now missing. 

The lessening can continue. We may find that the diagram of 
immediate effects is simply 

~[g) 
so that the whole consists really of two parts that are functionally 
independent. In this case the whole is said to be reducible. The 
importance of this concept will be referred to later (S.13/21). 

Ex.: Of the systems in Ex. 4/1211, which are reducible? 

4/15. Materiality. The reader may now like to test the methods of 
this chapter as an aid to solving the problem set by the following 
letter. It justifies the statement made in S.l/2 that cybernetics is not 
bound to the properties found in terrestrial matter, nor does it draw 
its laws from them. What is important in cybernetics is the extent 
to which the observed behaviour is regular and reproducible. 

Dear Friend, 

"Graveside" 
Wit's End 

Haunts. 

Some time ago I bought this old house, but found it to be 
haunted by two ghostly noises-a ribald Singing and a sar
donic Laughter. As a result it is hardly habitable. There is 
hope, however, for by actual testing I have found that their 
behaviour is subject to certain laws, obscure but infallible, 
and that they can be affected by my playing the organ or 
burning incense. 

In each minute, each noise is either sounding or silent
they show no degrees. What each will do during the ensu
ing minute depends, in the following exact way, on what 
has been happening during the preceding minute: 
The Singing, in the succeeding minute, will go on as it was 
during the preceding minute (sounding or silent) unless there 
was organ-playing with no Laughter, in which case it will 
change to the opposite (sounding to silent, or vice versa). 

As for the Laughter, if there was incense burning, then it 
will sound or not according as the Singing was sounding or 
not (so that the Laughter copies the Singing a minute later). 
If however there was no incense burning, the Laughter will 
do the opposite of what the Singing did. 
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At this minute of writing, the Laughter and Singing are 
troth sounding. Please tell me what manipulations of 
incense and organ I should make to get the house quiet, and 
to keep it so. 

(Hint: Compare Ex. 4/1/4.) 

Ex. 2: (Continued.) Does the Singing have an immediate effect on the Laughter? 
Ex. 3: (Continued.) Does the incense have an immediate effect on the Singing? 
Ex. 4: (Continued.) Deduce the diagram of immediate effects of this machine 

with input (with two parameters and two variables). 

THE VERY LARGE SYSTEM 

4/16. Up till now, the systems considered have all seemed fairly 
simple, and it has been assumed that at all times we have under
stood them in all detail. Cybernetics, however, looks forward to 
being able to handle systems of vastly greater complexity-com
puting machines, nervous systems, societies. Let us, then, con
sider how the methods developed so far are to be used or modified 
when the system is very large. 

4/17. What is meant by its "size" needs clarification, for we are 
not here concerned with mere mass. The sun and the earth form 
only a "small" system to us, for astronomically they have only 
twelve degrees of freedom. Rather, we refer to the system's com
plexity. But what does that mean here ? If our dynamic system 
were a native family of five persons, would we regard it as made 
of 5 parts, and therefore simple, or as of 1 025 atoms, and therefore 
very complex ? 

In the concepts of cybernetics, a system's "largeness" must 
refer to the number of distinctions made: either to the number of 
states available or, if its states are defined by a vector, to the num
ber of components in the vector (i.e. to the number of its variables 
or of its degrees of freedom, S.7/13). The two measures are corre
lated, for if other things are equal, the addition of extra variables 
will make possible extra states. A system may also be made larger 
from our functional point of view if, the number of variables 
being fixed, each is measured more precisely, so as to make it 
show more distinguishable states. We shall not, however, be 
much interested in any exact measure of largeness on some par
ticular definition; rather we shall refer to a relation between the 
system and some definite, given, observer who is going to try to 
study or control it. In this book I use the words "very large" to 
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imply that some definite observer en, with definite resources and 
techniques, and that the system some practical way, too large for 
him; so that he cannot observe completely, or control it com
pletely, or carry out the calculations for prediction completely. In 
other words, he says the system "very large" if in some way it 
beats him by its richness and complexity. 

Such systems are common enough. A classic case occurred 
when the theoretical physicist of the nineteenth century tried to 
use Newtonian mechanics to calculate how a gas would behave. 
The number of particles in an ordinary volume of gas is so vast 
that no practical observation could record the system's state, and 
no practical relation could predict its future. Such a system was 
"very " in relation to the nineteenth century physicist. 

The stock-breeder faces a "very large" system in the genes he is 
g to mould to a new pattern. Their number and the complexities 
of their interactions makes a detailed control of them by impossi
ble in practice. 

Such systems, in relation to our present resources for observa
tion control, are very common in the biological world, and in its 
social and economic relatives. They are certainly common in the 
brain, though for many years the essential complexity was given 
only grudging recognition. It is now coming to be recognised, 
however, that this complexity is something that can be ignored no 
longer. "Even the simplest bit of behavior", says Lashley, 
"requires the integrated action of millions of neurons .... I have 
come to believe almost every nerve cell in the cerebral cortex may 
be excited in every activity .... The same neurons which maintain 
the memory traces and participate in the revival of a memory are 
also involved, in different combinations, in thousands of other 
memories acts." And von Neumann: "The number of neurons in 
the central nervous system is somewhere of the order of 1010 . We 
have absolutely no past experience with systems of this degree of 
complexity. All artificial automata made by man have numbers of 
parts which by any comparably schematic count are of the order 
103 to 106." (Cerebral Mechanisms in Behavior.) 

4/18.lt should be noticed that largeness per se in no way invalidates 
the principles, arguments, and theorems of the previous chapters. 
Though the examples have been confined to systems with only a 
states or a few variables, this restriction was solely for the author's 
and reader's convenience: the arguments remain valid without any 
restriction on the number of states or variables in the system. It is a 
peculiar advantage of the method of arguing about states, rather 
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than the more usual variables, that it requires no explicit mention of 
the system's number of parts; and theorems once proved true are 
true for systems of all sizes (provided, of course, that the systems 
conform to the suppositions made in the argument). 

What remains valid is, of course, the truth of the mathematical 
deductions about the mathematically defined things. What may 
change, as the system becomes very large, is the applicability of 
these theorems to some real material system. The applicability, 
however, can be discussed only in relation to particular cases. For 
the moment, therefore, we can notice that size by itself does not 
invalidate the reasonings that have been used so far. 

4/19. Random coupling. Suppose now that the observer faces a 
system that, for him, is very large. How is he to proceed ? Many 
questions arise, too many to be treated here in detail, so I shall 
select only a few topics, letting them serve as pattern for the rest. 
(See S.6/19 and Chapter 13.) First, how is the system to be speci
fied? 

By definition, the observer can specify it only incompletely. 
This is synonymous with saying that he must specify it "statisti
cally'', for statistics is the art of saying things that refer only to 
some aspect or portion of the whole, the whole truth being too 
bulky for direct use. If it has too many parts for their specification 
individually they must be specified by a manageable number of 
rules, each of which applies to many parts. The parts specified by 
one rule need not be identical; generality can be retained by 
assuming that each rule specifies a set statistically. This means 
that the rule specifies a distribution of parts and a way in which it 
shall be sampled. The particular details of the individual outcome 
are thus determined not by the observer but by the process of sam
pling (as two people might leave a decision to the spin of a coin). 

The same method must be used for specification of the cou
pling. If the specification for coupling is not complete it must in 
some way be supplemented, for ultimately some individual and 
single coupling must actually occur between the parts. Thus the 
coupling must contain a "random" element. What does this mean? 

To make the discussion definite, suppose an experimenter has 
before him a large number of identical boxes, electrical in nature, 
each with three input and three output terminals. He wishes to form 
an extensive network, coupled "at random", to see what its proper
ties will be. He takes up some connecting wires and then realises 
that to say "couple them at random" is quite insufficient as a defi
nition of the way of coupling; all sorts of "couplings at random" 
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are possible. Thus he might, if there are n boxes, label 6n cards 
with numbers from 1 to 6n, label the terminals similarly, shuffle 
the cards and then draw two cards to nominate the two terminals 
that shall be joined with the first wire. A second pair of cards will 
name the terminals joined by the second wire; and so on. A deci
sion would have to be made whether the first two drawn cards were 
to be replaced or not before the next shuffling and drawing. The 
decision is important, for replacement allows some terminals to 
have no wire and others to have several, while non-replacement 
forces every terminal to have one wire and one only. This distinc
tion would probably be significant in the characteristics of the net
work and would therefore require specification. Again, the method 
just mentioned has the property of allowing output to be joined to 
output. If this were undesirable a new method would have to be 
defined; such might be: "Label the inputs 1 to 3n and also outputs 
1 to 3n; label 3n cards with numbers 1 to 3n; join a wire to input I 
and draw a card to find which output to connect it to; go on simi
larly through inputs 2, ... , 3n ". Here again replacement of the card 
means that one output may go to several inputs, or to none; non
replacement would give one output to each input. 

Enough has probably been said to show how essential an accu
rate definition of the mode of sampling can be. Sometimes, as 
when the experimenter takes a sample of oxygen to study the gas 
laws in it, he need not specify how he obtained the sample, for 
almost all samples will have similar properties (though even here 
the possibility of exact definition may be important, as Rayleigh 
and Ramsay found when some specimens of nitrogen gave persis
tently different atomic weights from others). 

This "statistical" method of specifying a system-by specifica
tion of distributions with sampling methods-should not be 
thought of as essentially different from other methods. It includes 
the case of the system that is exactly specified, for the exact spec
ification is simply one in which each distribution has shrunk till 
its scatter is zero, and in which, therefore, "sampling" leads to one 
inevitable result. What is new about the statistical system is that 
the specification allows a number of machines, not identical, to 
qualify for inclusion. The statistical "machine" should therefore 
be thought of as a set of machines rather than as one machine. For 
this chapter, however, this aspect will be ignored (it is taken up 
fully in Chapter 7). 

It will now be seen, therefore, that it is, in a sense, possible for 
an observer to specify a system that is too large for him to specify! 
The method is simple in principle: he must specify broadly, and 
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must specify a general method by which the details shall be spec
ified by some source other than himself. In the examples above, it 
was a pack of cards that made the final decision. A final, unique 
system can thus be arrived at provided his specification is supple
mented. (The subject is developed more thoroughly in 8.13/18.) 

Ex. 1: Defme a method (using dice, cards, random numbers, etc.) that will bring 
the closed single-valued transformation T: 

T· t sl Sz s3 s4 Ss s6 
. ? ? ? ? ? ? 

to some particular form, so that the fmal particular form is selected by the 
method and not by the reader. 

Ex. 2: (Continued.) Define a method so that the transformation shall be one-one, 
but not otherwise restricted. 

Ex. 3: (Continued.) Define a method so that no even-numbered state shall trans
form to an odd-numbered state. 

Ex. 4: (Continued.) Define a method so that any state shall transform only to a 
state adjacent to it in number. 

Ex. 5: Define a method to imitate the network that would be obtained if parts 
were coupled by the following rule: ln two dimensions, with the parts placed 
m a regular pattern thus: 

0 0 0 
0 0 0 
0 0 0 

extending indefinitely in all directions in the plane, each part either has an 
immediate effect on its neighbour directly above it or does not, with equal 
probability; and similarly for its three neighbours to right and left and below. 
Construct a sample network. 

4/20. Richness of connexion. The simplest system of given large
ness is one whose parts are all identical, mere replicates of one 
another, and between whose parts the couplings are of zero degree 
(e.g. Ex. 4/1/6). Such parts are in fact independent of each other 
which makes the whole a "system" only in a nominal sense, for it 
is totally reducible. Nevertheless this type of system must be con
sidered seriously, for it provides an important basic form from 
which modifications can be made in various ways. Approximate 
examples of this type of system are the gas whose atoms collide 
only rarely, the neurons in the deeply narcotised cortex (if they 
can be assumed to be approximately similar to one another) and a 
species of animals when the density of population is so low that 
they hardly ever meet or compete. In most cases the properties of 
this basic type of system are fairly easily deducible. 

The first modification to be considered is obviously that by 
which a small amount of coupling is allowed between the parts, 
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so that some coherence is introduced into the whole. Suppose then 
that into the system's diagram of immediate effects some actions, 
i.e. some arrows, are added, but only enough to give coherency to 
the set of parts. The least possible number of arrows, if there are 
n parts, is n-1; but this gives only a simple long chain. A small 
amount of coupling would occur if the number of arrows were 
rather more than this but not so many as n2-n (which would give 
every part an immediate effect on every other part). 

Smallness of the amount of interaction may thus be due to 
smallness in the number of immediate effects. Another way, 
important because of its commonness, occurs when one part or 
variable affects another only under certain conditions, so that the 
immediate effect is present for much of the time only in a nominal 
sense. Such temporary and conditional couplings occur if the vari
able, for any reason, spends an appreciable proportion of its time 
not varying (the "part-function"). One common cause of this is the 
existence of a threshold, so that the variable shows no change 
except when the disturbance coming to it exceeds some definite 
value. Such are the voltage below which an arc will not jump 
across a given gap, and the damage that a citizen will sustain 
before he thinks it worth while going to law. In the nervous sys
tem the phenomenon of threshold is, of course, ubiquitous. 

The existence of threshold induces a state of affairs that can be 
regarded as a cutting of the whole into temporarily isolated sub
systems; for a variable, so long as it stays constant, cannot, by S.4/ 
12, have an effect on another; neither can it be affected by another. 
In the diagram of immediate effects it will lose both the arrows 
that go from it and those that come to it. The action is shown dia
grammatically in Fig. 4/2011. 

The left square shows a basic network, a diagram of immediate 
effects, as it might have been produced by the method of Ex. 4/19/ 
5. The middle square shows what remains if thirty per cent of the 
variables remain constant (by the disturbances that are coming to 
them being below threshold). The right square shows what 
remains if the proportion constant rises to fifty per cent. Such 
changes, from left to right, might be induced by a rising threshold. 
It will be seen that the reacting sub-systems tend to grow smaller 
and smaller, the rising threshold having the effect, functionally, of 
cutting the whole network into smaller and smaller parts. 

Thus there exist factors, such as "height of threshold" or "pro
portion of variables constant", which can vary a large system con
tinuously along the whole range that has at one end the totally 
joined form, in which every variable has an immediate effect on 
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every other variable, and at the other end the totally-unjoined 
form, in which every variable is independent of every other. Sys
tems can thus show more or less of"wholeness". Thus the degree 
may be specifiable statistically even though the system is far too 
large for the details to be specified individually. 

Ex.: Can a disturbance a: A (Fig. 4/20/1) affect B in the left-hand system? In the 
other two? 

4/21. Local properties. Large systems with much repetition in the 
parts, few immediate effects, and slight couplings, can commonly 
show some property .n a localised form, so that it occurs in only 
a few variables, and so :hat its occurrence (or not) in the few vari
ables does not detetmine whether or not the same property can 
occur in other sets of a few variables. Such localisable properties 
are usually of great importance in such systems, and the remain
der of this chapter will be given to their consideration. Here are 
some examples. 

In simple chemistry the reaction of silver nitrate in solution 
with sodium chloride for instance-the component parts number 
about 1022, thus constituting a very large system. The parts 
(atoms, ions, etc.) are largely repetitive, for they consist of only 
a dozen or so types. In addition, each part has an immediate effect 
on only a minute fraction ofthe totality of parts. So the coupling 
(or not) of one silver ion to a chloride ion has no effect on the 
great majority of other pairs of ion; As a result, the property 
"coupled to form AgCl" can exist over and over again in recogn
isable form throughout the system. Contrast this possibility of 
repetition with what happens in a well coupled system, in ather
mostat for instance. In the thermostat, such a localised property 
can hardly exist, and can certainly not be repeated independently 
elsewhere in the system; for the existence of any property at one 
point is decisive in determining what shall happen at the other 
points. 

The change from the chemistry of the solution in a test tube to 
that of protoplasm is probably of the same type, the protoplasm, 
as a chemically dynamic system, being too richly interconnected 
in its parts to allow much local independence in the occurrence of 
some property. 

Another example is given by the biological world itself, 
regarded as a system of men' parts This system, composed ulti
mately ofthe atoms of the earth's surface, is made of parts that are 
largely repetitive, both at a low level in that all carbon atoms are 
chemically alike, and at a high level in that all members of a spe-
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cies are more or less alike. In this system various properties, if 
they exist in one place, can also exist in other places. It follows 
that the basic properties of the biological world will be of the 
types to be described in the following sections. 

4/22. Self-locking properties. It is a general property of these sys
tems that their behaviour in time is much affected by whether 
there can, or cannot, develop properties within them such that the 
property, once developed, becomes inaccessible to the factors that 
would "undevelop" it. Consider, for instance, a colony of oysters. 
Each oyster can freely receive signals of danger and can shut 
close; once shut, however, it cannot receive the signals of safety 
that would re-open it. Were these the only factors at work we 
could predict that in time the colony of oysters would pass entirely 
into the shut condition-an important fact in the colony's history! 

In many other systems the same principle can be traced more 
seriously, and in almost all it is important. Consider, for instance 
a solution of reacting molecules that can form various compounds 
some of which can react again but one of which is insoluble, so 
that molecules in that form are unreactive. The property of"being 
the insoluble compound" is now one which can be taken by part 
after part but which, after the insolubility has taken the substance 
out of solution, cannot be reversed. The existence of this property 
is decisive in the history of the system, a fact well known in chem
istry where it has innumerable applications. 

Too little is known about the dynamics of the cerebral cortex for 
us to be able to say much about what happens there. We can how
ever see that if the nerve cells belong to only a few types, and if 
the immediate effects between them are sparse, then if any such 
"self-locking" property can exist among them it is almost certain 
to be important-to play a major part in determining the cortex's 
behaviour, especially when this continues over a long time. Such 
would occur, for instance, if the cells had some chance of getting 
into closed circuits that reverberated too strongly for suppression 
by inhibition. Other possibilities doubtless deserve consideration. 
Here we can only glance at them. 

The same principle would also apply in an economic system if 
workers in some unpleasant industry became unemployed from 
time to time, and during their absence discovered that more pleas
ant forms of employment were available. The fact that they would 
pass readily from the unpleasant to the pleasant industry, but 
would refuse to go back, would clearly be a matter of high impor
tance in the future of the industry. 
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In general, therefore, changes that are self-locking are usually of 
high importance in determining the eventual state of the system. 

4/23. Properties that breed. It should be noticed that in the previ
ous section we considered, in each example, two different sys
tems. For though each example was based on only one material 
entity, it was used to provide two sets of variables, and these sets 
form, by S. 3/11, two systems. The first was the obvious set, very 
large in number, provided by the parts; the second was the system 
with one variable: "number of parts showing the property". The 
examples showed cases in which this variable could not diminish 
with time. In other words it behaved according to the transforma
tion (if the number is n): 

n' 2':n. 

This transformation is one of the many that may be found when 
the changes of the second system (number of parts showing the 
property) is considered. It often happens that the existence of the 
property at some place in the system affects the probability that it 
will exist, one time-interval later, at another place. Thus, if the 
basic system consists of a trail of gunpowder along a line 12 
inches long, the existence of the property "being on fire" now at 
the fourth inch makes it highly probable that, at an interval later, 
the same property will hold at the third and fifth inches. Again, if 
a car has an attractive appearance, its being sold to one house is 
likely to increase its chance of being sold to adjacent houses. And 
if a species is short of food, the existence of one member 
decreases the chance of the continued, later existence of another 
member. 

Sometimes these effects are of great complexity; sometimes 
however the change of the variable "number having the property" 
can be expressed sufficiently well by the simple transformation 
n' = kn, where k is positive and independent of n. 

When this is so, the history of the system is often acutely depen
dent on the value ofk, particularly in its relation to+ 1. The equa
tion has as solution, if t measures the number of time- intervals 
that have elapsed since t = 0, and if n0 was the initial value: 

n =no e (k - I)t 

Three cases are distinguishable. 
( 1) k < 1. In this case the number showing the property falls 

steadily, and the density of parts having the property decreases. It 
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is shown, for instance, in a piece of pitchblende, by the number of 
atoms that are of radium. It is also shown by the number in a spe
cies when the species is tending to extinction. 

(2) k = 1. In this case the number tends to stay constant. An 
example is given by the number of molecules dissociated when 
the percentage dissociated is at the equilibria! value for the condi
tions obtaining. (Since the slightest deviation of k from 1 will take 
the system into one of the other two cases it is of little interest.) 

(3) k > 1. This case is of great interest and profound importance. 
The property is one whose presence increases the chance of its 
further occurrence elsewhere. The property "breeds", and the sys
tem is, in this respect, potentially explosive, either dramatically, 
as in an atom bomb, or insidiously, as in a growing epidemic. A 
well known example is autocatalysis. Thus if ethyl acetate has 
been mixed with water, the chance that a particular molecule of 
ethyl acetate will turn, in the next interval, to water and acetic acid 
depends on how many acetate molecules already have the prop
erty of being in the acid form. Other examples are commonly 
given by combustion, by the spread of a fashion, the growth of an 
avalanche, and the breeding of rabbits. 

It is at this point that the majestic development of life by Dar
winian evolution shows its relation to the theory developed here 
of dynamic systems. The biological world, as noticed in S.4/21, is 
a system with something like the homogeneity and the fewness of 
immediate effects considered in this chapter. In the early days of 
the world there were various properties with various k's. Some 
had k less than 1-they disappeared steadily. Some had k equal to 
1-they would have remained. And there were some with k 
greater than 1-they developed like an avalanche, came into con
flict with one another, commenced the interaction we call "com
petition", and generated a process that dominated all other events 
in the world and that still goes on. 

Whether such properties, with k greater than I, exist or can exist 
in the cerebral cortex is unknown. We can be sure, however, that 
~f such do exist they will be of importance, imposing outstanding 
characteristics on the cortex's behaviour. It is important to notice 
that this prediction can be made without any reference to the par
ticular details of what happens in the mammalian brain, for it is 
true of all systems of the type described. 

4/24. The remarks made in the last few sections can only illus
trate, in the briefest way, the main properties of the very large sys
tem. Enough has been said, however, to show that the very large 
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system is not wholly different from the systems considered in the 
earlier chapters, and to show that the construction of a really ade
quate theory of systems in general is more a question of time and 
labour than of any profound or peculiar difficulty. 

The subject of the very large system is taken up again in S.6/14. 
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Chapter 5 

STABILITY 

5/1. The word "stability" is apt to occur frequently in discussions 
of machines, but is not always used with precision. Bellman refers 
to it as" ... stability, that much overburdened word with an unsta
bilised definition". Since the ideas behind the word are of great 
practical importance, we shall examine the subject with some care, 
distinguishing the various types that occur. 

Today's terminology is unsatisfactory and confused; I shall not 
attempt to establish a better. Rather I shall focus attention on the 
actual facts to which the various words apply, so that the reader will 
tend to think of the facts rather than the words. So far as the words 
used are concerned, I shall try only to do no violence to established 
usages, and to be consistent within the book. Each word used will 
be carefully defined, and the defined meaning will be adhered to. 

5/2. Invariant. Through all the meanings runs the basic idea of an 
"invariant": that although the system is passing through a series of 
changes, there is some aspect that is unchanging; so some state
ment can be made that, in spite of the incessant changing, is true 
unchangingly. Thus, if we take a cube that is resting on one face 
and tilt it by 5 degrees and let it go, a whole series of changes of 
position follow. A statement such as "its tilt is I 0 " may be true at 
one moment but it is false at the next. On the other hand, the state
ment "its tilt does not exceed 6°" remains true permanently. This 
truth is invariant for the system. Next consider a cone stood on its 
point and released, like the cube, from a tilt of 5°. The statement 
"its tilt does not exceed 6°" is soon falsified, and (if we exclude 
reference to other subjects) so are the statements with wider lim
its. This inability to put a bound to the system's states along some 
trajectory corresponds to "instability". 

These are the basic ideas. To make them incapable of ambiguity 
we must go back to first principles. 

5/3. State of equilibrium. The simplest case occurs when a state 
and a transformation are so related that the transformation does 
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not cause the state to change. Algebraically it occurs when T(x) = 

x. Thus if T is 

r:t abc de f g h 
· dbhaefbe 

then since T(b) = b, the state b is a state of equilibrium under T. 
So also are e and f 

If the states are defined by vectors, then, for a vector to be 
unchanged, each component must be unchanged (by S.3/5). Thus 
if the state is a vector (x, y), and the transformation is 

U { x' = 2x - y + 2 
· y' =x+y+3 

then, at a state of equilibrium (x', y') must equal (x, y), and values 
for x andy must satisfY the equations 

i.e. 

{ x=2x-y+2 
y=x+y+3 

x-y =-2 
x=-3 

So this system has only one state of equilibrium, at (- 3,- I). Had 
the equations not been linear there might have been more. 

Exactly the same state, of course, is obtained by using the fact 
that at a state of equilibrium each component's change must be 
zero, giving x'- x = 0, y'- y = 0; which leads to the same equations 
as before. 

If the equations are in differential form, then the statement that 
xis to be unchanged with time is equivalent to saying that dxldt 
must be zero. So in the system 

dxldt = 2x-l 
dy/dt = xy- 1/2 

the state (1/2, 1) is one of equilibrium, because when x andy have 
these values all the derivatives become zero, i.e. the system stops 
moving. 

Ex. 1: VerifY that U transforms (- 3,- 1) to (- 3,- 1). 
Ex. 2: Has the system (of the last paragraph) any state of equilibrium other than 

(1/2,1)? 
Ex. 3: Find all the states of equilibrium of the transformation: 

x'=e-Ysinx, y'=x2. 
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Ex. 4: Find all the states of equilibrium of the transformation: 
dx/dt ~ e- sinx, dy/dt ~x2 . 

Ex. 5: lf x' = 2x-y + j, y' ~ x + y + k, find values for j and k that will give a state 
of equilibrium at (I, I). (Hint: First modify the equations to represent the 
state of equilibrium.) 

Ex. 6: lf T(b) ~ b, must T2(b), T3(b), etc., all also equal b? 

Ex. 7: Can an absolute system have more states of equilibrium than it has basins? 

Ex. 8: What is the characteristic appearance of the kinematic graph of a transfor-
mation whose states are all equilibria! ? 

Ex. 9: (Continued.) What special name was such a transformation given in an 
earlier chapter ? 

Ex. I 0: If the transformation is changed (the set of operands remaining the same) 
are the states of equilibrium changed? 

Ex. 11: lf a machine's input is changed, do its states of equilibrium change? 
(Hint: See Ex.5.) 

S/4. Cycle. Related to the states of equilibrium is the cycle, a 
sequence of states such that repeated application of the transforma
tion takes the representative point repeatedly round the sequence. 
Thus if Tis 

abcdefgh 
c h b h a c c g 

then, from a, T generates the trajectory 

acbhgcbhgcb ... 

and the representative point repeatedly traverses the cycle 

c ~ b 
i ~ 
g f--- h 

Ex. 1: Write down a transformation that contains two distinct cycles and three 
states of equilibrium. 

Ex. 2: (Continued.) Draw its kinematic graph. 

Ex. 3: Can a state of equilibrium occur in a cycle? 

Ex. 4: Can an absolute system have more cycles than it has basins? 

Ex. 5: Can one basin contain two cycles? 

*Ex. 6: Has the system dx/dt ~ y, dy/dt ~ -x a cycle? 

*Ex. 7: If the transformation has a finite number of states and is closed and sin
gle-valued, can a trajectory end in any way other than at a state of equilib
rium or in a cycle? 
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5/5. Stable region. If a is a state of equilibrium, T(a) is, as we saw 
in S.5/3, simply a. Thus the operation ofT on a has generated no 
new state. 

The same phenomenon may occur with a set of states. Thus, 
suppose Tis the (unclosed) transformation 

rt a b c d e f g h 
· pgbfaabm 

It has no state of equilibrium; but the set composed of band g has 
the peculiarity that it transforms thus 

I b g 
T t g b 

i.e. the operation ofT on this set has generated no new state. Such 
at is stable with respect to T. 

Fig. 5/511 

This relation between a set of states and a transformation is, of 
course, identical with that described earlier (S.2/4) as "closure". 
(The words "stable set" could have been used from there onwards, 
but they might have been confusing before the concept of stability 
was made clear; and this could not be done until other matters had 
been explained first.) 

If the transformation is continuous, the set of states may lie in a 
connected region. Thus in Fig. 5/5/1, the region within the bound
ary A is stable; but that within B is not, for there are points within 
the region, such asP, which are taken outside the region. 

The concept of closure, of a stable set of states, is of fundamen
tal importance in our studies. Some reasons were given in S.3/2, 
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where it was pointed out that only when the set is stable can the 
transformation proceed to all its higher powers unrestrictedly. 

Another reason is discussed more fully in S.l 0/4, where it is 
shown that such stability is intimately related to the idea of some 
entity "surviving" some operation. 

Ex. I: What other sets are stable with respect to T? 
Ex. 2: ls the set of states in a basin always stable? 
Ex. 3: ls the set of states in a cycle always stable ? 
Ex. 4: If a set of states is stable under T, and also under U, is it necessarily stable 

underUT? 

DISTURBANCE 

5/6.ln the cases considered so far, the equilibrium or stability has 
been examined only at the particular state or states concerned. 
Nothing has been said, or implied, about the behaviour at neigh
bouring states. 

The elementary examples of equilibrium-a cube resting on its 
face, a billiard ball on a table, and a cone exactly balanced on its 
point-all show a state that is one of equilibrium. Yet the cone is 
obviously different, and in an important way, from the cube. The 
difference is shown as soon as the two systems are displaced by 
disturbance from their states of equilibrium to a neighbouring 
state. How is this displacement, and its outcome, to be represented 
generally? 

A "disturbance" is simply that which displaces, that which 
moves a system from one state to another. So, if defined accu
rately, it will be represented by a transformation having the sys
tem's states as operands. Suppose now that our dynamic system 
has transformation T, that a is a state of equilibrium under T, and 
that Dis a given displacement-operator. In plain English we say: 
"Displace the system from its state of equilibrium and then let the 
system follow its own laws for some time and see whether the sys
tem does or does not come back to the same state". In algebraic 
form, we start with a state of equilibrium a, displace the system to 
state D(a), and then find TD(a), T2 D(a), T3 D(a), and so on; and we 
notice whether this succession of states does or does not finish as 
a, a, a, .... More compactly: the state of equilibrium a in the sys
tem with transformation T is stable under displacement D if and 
only if 

lim Tn D(a) = a 
n---'>= 

Try this formulation with the three standard examples. With the 
cube, a is the state with angle of tilt= 0°. D displaces this to, say, 
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5°, and T eventually will bring this back to oo. With the cone (hav
ing transformation U, say) D can be the same displacement, but 
the limit, whatever it is, of U"D(a) is certainly not a tilt of0°, the 
equilibrium is unstable. With the billiard ball, at position a, the 
dynamic laws will not bring it back to a after displacement, so it 
is not stable by the definition given here. It has the peculiarity, 
however, that the limit is D(a); i.e. it retains the displacement, 
annulling it nor exaggerating it. This is the case of neutral equi
librium. 

(It will be noticed that this study of what happens after the sys
tem has been displaced from a is worth making only if a is a state 
of equilibrium.) 

Ex. I: Is the state of equilibrium c stable to T under the displacement D if T 
given by: 

T 
D 

{ a b 
c d 
b a 

c d e 
c a e 
d e d 

Ex. 2: (Continued.) What if the state of equilibrium is e? 
Ex. 3: The region composed of the set of states b, c and dis stable under U: 

u 
E 

{abcdef 
d c b b c a 
befffd 

What is the effect of displacement E, followed by repeated action of U? 
(Hint: Consider all three possibilities.) 

517. When the dynamic system can vary continuously, small dis
turbances are, in practice, usually acting on it incessantly. Elec
tronic systems are disturbed by thermal agitation, mechanical 
systems by vibration, and biological systems by a host of minor 
disturbances. For this reason the only states of equilibrium that 
can, in practice, persist are those that are stable in the sense of the 
previous section. States of unstable equilibrium are of small prac
tical importance in the continuous system (though they may be of 
importance in the system that can change only by a discrete jump). 

The concept of unstable equilibrium is, however, of some theo
retical importance. For ifwe are working with the theory of some 
mechanism, the algebraic manipulations (S.S/3) will give us all 
the states of equilibrium-stable, neutral, and unstable-and a 
good deal of elimination may be necessary if this set is to be 
reduced to the set states that have a real chance of persistence. 

Ex. :Make up a transformation with two states of equilibrium, a and b, and two 
disturbances, D and E, so that a is stable to D but not to E, and b is stable to 
E but not to D. 
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5/8. In general, the results of repeated application of a transforma
tion to a state depend on what that state is. The outcome of the test 
of finding what is 

lim Tn(x) 
n---7oo 

will thus depend in general on which state is x. Thus if there are 
two disturbances available, D and E, and D takes a to b, while E 
takes a to c (no order being implied between a, band c) the limits 
ofT' D(a) and T' E(a) may be different. 

Thus the result of a test for stability, carried out in the manner 
of S.S/6, may give different results according to whether the dis
placement is D or E. The distinction is by no means physically 
unreasonable. Thus a pencil, balanced on its square-cut base, may 
be stable to D, if Dis a displacement of I o from the vertical, but 
may be unstable toE, if Eisa displacement of 5°. 

The representation given in S.S/6 thus accords with common 
practice. A system can be said to be in stable equilibrium only if 
some sufficiently definite set of displacements D is specified. If 
the specification is explicit, then Dis fully defined. Often Dis not 
given explicitly but is understood; thus if a radio circuit is said to 
be "stable", one understands that D means any of the commonly 
occurring voltage fluctuations, but it would usually be understood 
to exclude the stroke of lightning. Often the system is understood 
to be stable provided the disturbance lies within a certain range 
What is important here is that in unusual cases, in biological sys
tems for instance, precise specification of the disturbances D, and 
of the state of equilibrium under discussion a, may be necessary 
if the discussion is to have exactness. 

5/9. The continuous system. In the previous sections, the states 
considered were usually arbitrary. Real systems, however, often 
show some continuity, so that the states have the natural relation
ship amongst themselves (quite apart from any transformation im
posed by their belonging to a transducer) that two states can be 
"near" or "far from" one another. 

With such systems, and a state of equilibrium a, D is usually 
defined to be a displacement, from a, to one of the states "near" a. 
If the states are defined by vectors with numerical components, 
i.e. based on measurements, then D often has the effect of adding 
small numerical quantities 81, 82, .. , On to the components, so that 
the vector (xl, ... , xn) becomes the vector (xl +81, ... , X,+ on). 

In this form, more specialised tests for stability become possi
ble. An introduction to the subject has been given in Design ... 
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The subject soon becomes somewhat mathematical; here it is suf
ficient to notice that these questions are always capable of being 
answered, at least in principle, by the process of actually tracing 
the changes through the states D(a), TD(a), T2D(a), etc. (Com
pare S.3/9). The sole objection to this simple, fundamental and 
reliable method is that it is apt to become exceedingly laborious 
in the complicated cases. It is, however, capable of giving an 
answer in cases to which the more specialised methods are inap
plicable. In biological material, the methods described in this 
chapter are likely to prove more useful than the more specialised; 
for the latter often are applicable only when the system is contin
uous and linear, whereas the methods of this chapter are applica
ble always. 

A specially simple and well known case occurs when the sys
tem consists of parts between which there is feedback, and when 
this has the very simple form of a single loop. A simple test for 
stability (from a state of equilibrium assumed) is to consider the 
sequence of changes that follow a small displacement, as it travels 
round the loop. If the displacement ultimately arrives back at its 
place of origin with size and sign so that, when added algebra
ically to the initial displacement, the initial displacement is dimin
ished, i.e. is (commonly) stable. The feedback, in this case, is said 
to be "negative" (for it causes an eventual subtraction from the 
initial displacement). 

The test is simple and convenient, and can often be carried out 
mentally; but in the presence of any complications it is unreliable 
if carried out in the simple form described above. The next section 
gives an example of one way in which the rule may break down if 
applied crudely. 

Ex. 1: Identify a, D and Tin Ex. 3/6/17. Is this system stable to this displacement? 

Ex. 2: (Continued.) Contrast Ex. 3/6/19. 

Ex. 3: Identify a and Tin Ex. 2/14/11. Is it stable if D is any displacement from 
a? 

Ex. 4 Take a child's train (one that runs on the floor, not on rails) and put the line 
of carriages slightly out of straight. Let M be the set of states in whichthe 
deviations from straightness nowhere exceed 5°. LetT be the operation of 
drawing it along by the locomotive. IsM stable under T? 

Ex. 5: (Continued.) Let U be the operation of pushing it backwards by the loco
motive. IsM stable under U? 

Ex. 6: Why do trains have their locomotives in front? 
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Ex. 7: A bus service starts with its buses equally spaced along the route. If a bus 
is delayed, extra passengers collect at the stopping points, so it has to take 
up, and set down, more passengers than usual. The bus that follows has fewer 
passengers to handle and is delayed less than usual. Are irregularities of 
spacing self-correcting or self-aggravating? 

Ex. 8: What would happen if an increase of carbon dioxide in the blood made the 
respiratory centre less active? 

Ex. 9: Is the system x'= 1/2y, y' = 1/2 x stable around (0,0)? 

5/10. Positive feedback. The system described in the last exercise 
deserves closer attention. 

From (10,10) it goesto(5,5) 
" (1 0, 12) " " ( 6,5); 

so an increase in y (from 10 to 12) leads to an increase in x (from 
5 to 6). (Compare S.4/13.) Similarly, 

from (10,10) it goesto(5,5) 
" (12, 10) " " " (5,6) 

so an increase in x (from 10 to 12) leads to an increase in y (from 
5 to 6). Each variable is thus having a positive effect on the other 
and if the system were discussed in plain words these facts might 
be used to "prove" that it is unstable, for a vicious circle seems to 
be acting. 

The system's behaviour, by converging back to (0,0), declares 
indisputably that the system is stable around this state of equilib
rium. It shows clearly that arguments based on some short cut, e.g. 
by showing that the feedback is positive, may not be reliable. (It 
shows also that feedback can be positive and yet leave the system 
stable; yet another example of how unsuitable is the concept of 
feedback outside its particular range of applicability.) 

5/11. Undesirable stability. Stability is commonly thought of as 
desirable, for its presence enables the system to combine of flex
ibility and activity in performance with something of permanence. 
Behaviour that is goal-seeking is an example of behaviour that is 
stable around a state of equilibrium. Nevertheless, stability is not 
always good, for a system may persist in returning to some state 
that, for other reasons, is considered undesirable. Once petrol is lit 
it stays in the lit state, returning to it after disturbance has changed 
it to "half-lit"-a highly undesirable stability to a fireman. 

Another example is given by the suggestion that as the more 
intelligent members of the community are not reproducing their 
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kind as freely as are the less intelligent, the Intelligence Quotient 
of the community will fall. Clearly it cannot fall very low, because 
the feebleminded can reproduce better than the idiot. So if these 
were the only factors in the situation, the I.Q. would be stable at 
about 90. Stability at this figure would be regarded by most peo
ple as undesirable. 

An interesting example of stability occurs in the condition 
known as "causalgia", in which severe pain, without visible 
cause, occurs in a nerve which has previously been partly divided. 
Granit has shown that it is almost certainly due to conduction, at 
the site of injury, of impulses from the motor (outgoing) to the 
sensory (incoming) nerves, allowing the formation of a regenera
tive circuit via the reflex centres in the spinal cord. Such a circuit 
has two states of equilibrium, each stable: conducting few 
impulses or conducting the maximal number.lt is like a top-heavy 
see-saw, that will rest in either of two extreme conditions but will 
not rest in between. The patient is well aware that "stability" can 
be either good or bad, for of the two stable states one is comfort
able and the other extremely painful. 

EQUILIBRIUM IN PART AND WHOLE 

5/12. We can now notice a relation between coupling and equilib
rium that will be wanted later (S.12/14 and 13/19), for it has 
important applications. 

Suppose some whole system is composed of two parts A and B, 
which have been coupled together: 

0~[!] 

and suppose the whole is at a state of equilibrium. 
This means that the whole's state is unchanging in time. But the 

whole's state is a vector with two components: that of A's state 
and that of B 's. It follows that A, regarded as a sub-system, is also 
unchanging; and so is B. 

Not only is A's state unchanging but so is the value of A's 
input; for this value is determined by B's state (S.4/7), which is 
unchanging. Thus A is at a state of equilibrium in the conditions 
provided by B. (Cf. Ex. 5/3/11.) The similar property holds for B. 
Thus, if the whole is at a state of equilibrium, each part must be 
in a state of equilibrium in the conditions provided by the other. 

The argument can also be reversed. Suppose A and B are at 
states of equilibrium, and that each state provides, for the other 
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system, an input-value that makes the other's state to be one of 
equilibrium. Then neither can change, and the whole cannot 
change; and thus the whole must be at a state of equilibrium. 

Thus each implies the other. Formally: the whole is at a state of 
equilibrium if and only if each part is at a state of equilibrium in 
the conditions provided by the other part. (If there are several 
parts the last word is merely changed to "parts".) 

5/13. Power of veto. The same thesis can be stated more vividly 
making it more useful conceptually. Suppose A and Bare coupled 
and suppose we are interested only in the occurrence of a state of 
equilibrium (not of cycles). When the whole is started from some 
initial state, and goes along some trajectory, A and B will pass 
through various states. Suppose it happens that at some moment 
B 's state provides conditions that make A's present state one of 
equilibrium. A will not change during the next step. If B is not 
itself at a state of equilibrium in the conditions provided by A, it 
will move to a new state. A's conditions will thereby be changed, 
its states of equilibrium will probably be changed, and the state it 
is at will probably no longer be one of equilibrium. So A will start 
moving again. 

Picturesquely, we can say that A proposed a state of equilibrium 
(for A was willing to stop), but B refused to accept the proposal, 
or vetoed the state. We can thus regard each part as having, as it 
were, a power of veto over the states of equilibrium of the whole. 
No state (of the whole) can be a state of equilibrium unless it is 
acceptable to every one of the component parts, each acting in the 
conditions given by the others. 

Ex.: Three one-variable systems, with Greek-letter parameters, are: 
x' =- x + a, y' = 2f3y + 3, z' ~ JC + 8. 

Can they be coupled so as to have a state of equilibrium at (0,0,0)? (Hint: 
What value would ~ have to have ?) 

5/14. The homeostat. This principle provides a simple way of 
looking at the homeostat and of understanding its working. It can 
be regarded as a part A coupled to a part B (Fig. 511411). 

Part A consists essentially of the four needles (with ancillary 
coils, potentiometers, etc.) acting on one another to form a 
four-variable system to which B 's values are input. A's state is 
specified by the positions of the four needles. Depending on the 
conditions and input, A may have states of equilibrium with the 
needles either central or at the extreme deviation. 

Part B consists essentially of a relay, which can be energised or 
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not, and four stepping-switches, each of which can be in any one 
of 25 positions (not shown accurately in the Figure). Each posi
tion carries a resistor of some value. So B has 2 x 25 x 25 x 25 x 
25, i.e. 781250, states. To this system A is input. B has been built 
so that, with the relay energised, none of B 's states is equilibria} 
(i.e. the switches keep moving), while, with the relay not ener
gised, all are equilibria} (i.e. all switches stay where they are). 

Finally, B has been coupled to A so that the relay is non-ener
gised when and only when A is stable at the central positions. 

A B 

bi~ 
... 

~o~oood-
,. 

·r· ..... I . . •·· ··. -------.------- . . 
J:,!b 

. . 
~' . . 

... <·· . ... 7 . . 
"' 

. . : ~ . . . . . . 
Fig. 5114/1 

When a problem is set (by a change of value at some input to A 
not shown formally in the Figure), A has a variety of possible 
states of equilibrium, some with the needles at the central posi
tions, some with the needles fully diverged. The whole will go to 
some state of equilibrium. An equilibrium of the whole implies 
that B must be in equilibrium, by the principle of the previous sec
tion. But B has been made so that this occurs only when the relay 
is non-energised. And B has been coupled to A so that the relay is 
non-energised only when A's needles are at or near the centres. 
Thus the attachment if B vetoes all of A's equilibria except such 
as have the needles at he centre. 

It will now be seen that every graph shown in Design ... could 
have been summed up by one description: "trajectory of a system 
tinning to a state of equilibrium". The homeostat, in a sense, does 
nothing more than run to a state of equilibrium. What Design . .. 
showed was that this simple phrase may cover many intricate and 
interesting ways of behaving, many of them of high interest in 
physiology and psychology. 

(The subject of"stability" recurs frequently, especially in S.9/ 
6, 0/4, 12/11; that of the homeostat is taken up again in S.l2/15.) 
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5/15. The complex of ideas involved in "stability" can now be 
summarised. 

First there is the state of equilibrium-the state that is 
unchanged by the transformation. Then the state may become 
multiple, and we get the stable set of states, of which the cycle and 
basin are examples. 

Given such a state or set of states and some particular distur
bance we can ask whether, after a disturbance, the system will 
return to its initial region. And if the system is continuous, we can 
ask whether it is stable against all disturbances within a certain 
range of values. 

Clearly, the concept of stability is essentially a compound one. 
Only when every aspect of it has been specified can it be applied 
unambiguously to a particular case. Then if its use calls for so 
much care, why should it be used at all ? Its advantage is that, in 
the suitable case, it can sum up various more or less intricate pos
sibilities briefly. As shorthand, when the phenomena are suitably 
simple, words such as equilibrium and stability are of great value 
and convenience. Nevertheless, it should be always borne in mind 
that they are mere shorthand, and that the phenomena will not 
always have the simplicity that these words presuppose. At all 
times the user should be prepared to delete them and to substitute 
the actual facts, in terms of states and transformations and trajec
tories, to which they refer. 

It is of interest to notice, to anticipate S.6119, that the attempt to 
say what is significant about a system by a reference to its stability 
is an example of the "topological" method for describing a large 
system. The question "what will this system do?", applied to, say, 
an economic system, may require a full description of every detail 
of its future behaviour, but it may be adequately answered by the 
much simpler statement "It will return to its usual state" (or per
haps "it will show ever increasing divergence"). Thus our treat
ment in this chapter has been of the type required when dealing 
with the very large system. 
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Chapter 6 

THE BLACK BOX 

6/1. The methods developed in the previous chapters now enable 
us to undertake a study of the Problem ofthe Black Box; and the 
study will provide an excellent example of the use of the methods. 

The Problem of the Black Box arose in electrical engineering. 
The engineer is given a sealed box that has terminals for input, to 
which he may bring any voltages, shocks, or other disturbances he 
pleases, and terminals for output, from which he may observe 
what he can. He is to deduce what he can of its contents. 

Sometimes the problem arose literally, when a secret and sealed 
bomb-sight became defective and a decision had to be made, 
without opening the box, whether it was worth returning for repair 
or whether it should be scrapped. Sometimes the problem arose 
practically, as when a telephone engineer considered a compli
cated set of relations between tests applied and results observed, 
in the middle of a mass of functioning machinery that was not to 
be dismantled for insufficient reason. 

Though the problem arose in purely electrical form, its range of 
application is far wider. The clinician studying a patient with 
brain damage and aphasia may be trying, by means of tests given 
and speech observed, to deduce something of the mechanisms that 
are involved. And the psychologist who is studying a rat in a maze 
may act on the rat with various stimuli and may observe the rat's 
various behaviours; and by putting the facts together he may try 
to deduce something about the neuronic mechanism that he can
not observe. T need not give further examples as they are to be 
found everywhere (S.6/17). 

Black Box theory is, however, even wider in application than 
these professional studies. The child who tries to open a door has 
to manipulate the handle (the input) so as to produce the desired 
movement at the latch (the output); and he has to learn how to 
control the one by the other without being able to see the internal 
mechanism that links them. In our daily lives we are confronted at 
every turn with systems whose internal mechanisms are not fully 
open to inspection, and which must be treated by the methods 
appropriate to the Black Box. 
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The experimenter who is not interested in Black Box theory 
usually regards any casing as merely a nuisance, for it delays his 
answering the question "what is in this Box?" We, however, shall 
be considering such larger questions as 

"How should an experimenter proceed when faced with a Black 
Box?" 

"What properties of the Box's contents are discoverable and 
what are fundamentally not discoverable ?" 

"What methods should be used if the Box is to be investigated 
efficiently ?" 

Proper attention can be given to these questions only by our 
accepting the existence, at least temporarily, of a casing, and pro
ceeding accordingly. Then, and only then, can we develop a sci
entific epistemology. 

6/2. To start with, let us make no assumptions at all about the 
nature of the Box and its contents, which might be something, say, 
that has just fallen from a Flying Saucer. We assume, though, that 
the experimenter has certain given resources for acting on it (e.g. 
prodding it, shining a light on it) and certain given resources for 
observing its behaviour (e.g. photographing it, recording its 
temperature). By thus acting on the Box, and by allowing the Box 
to affect him and his recording apparatus, the experimenter is cou
pling himself to the Box, so that the two together form a system 
with feedback: 

I Box ~~I Experimenter I 
For the coupling to be made in some defined and reproducible 

way, the Box's "input" must be specified, if only arbitrarily and 
provisionally. Every real system has an indefinitely large number 
of possible inputs-of possible means by which the experimenter 
may exert some action on the Box. Equally, it has an indefinitely 
large number of possible outputs-of ways by which it may affect 
the experimenter, perhaps through recording instruments. If the 
investigation is to be orderly, the set of inputs to be used and of 
outputs to be observed must be decided on, at least provisionally. 
Let us assume, then, that this has been done. 

The situation that we (author and reader) are considering can be 
made clearer by the introduction of two harmless conventions. Let 
it be assumed that the inputs, whatever their real nature, are 
replaced by, or represented by, a set oflevers or pointers-like the 
controls to a domestic cooking oven. We can then be quite clear 
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as to what is meant by the input "being in a certain state"-it is 
the state that would be shown on a snapshot of the controls. Also 
let us assume that the output consists of a set of dials, attached to 
the Box and affected by the mechanism inside, so that the pointers 
on the dials show, by their positions at any particular moment, the 
state of the output. 

We now see the experimenter much like the engineer in a ship, 
who sits before a set oflevers and telegraphs by which he may act 
on the engines, and who can observe the results on a row of dials. 
The representation, though it may seem unnatural, is in fact, of 
course, capable of representing the great majority of natural sys
tems, even if biological or economic. 

6/3. The Investigation. A man cannot step twice into the same 
water; neither can he twice conduct the same experiment. What he 
can do is to perform another experiment which differs from the 
first only in some way that is agreed to be negligible. 

The same fact applies to an examination of the Black Box. The 
sic data will always be ofthe form: 

Time 

t ... 

States of input and 
output 

in which, at each of a sequence of times, the states of the Box's 
various parts, input and output, are recorded. Thus, the Box that 
fell from the Flying Saucer might lead to the protocol: 

Time 

11.18 a.m. 

11.19 

11.20 

State 

I did nothing-the Box emitted a steady hum at 240 c/s. 

1 pushed over the switch marked K: the note rose to 480 c/s and 
remained steady. 

Accidentally I pushed the button marked "!"-the Box increased 
in temperature by 20°C. 

Etc. 

(The word protocol will be reserved for such a form and 
sequence.) 

Thus every system, fundamentally, is investigated by the col
lection of a long protocol, drawn out in time, showing the 
sequence of input and output states. Thus if one system had pos-
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sible input states a and~' and possible output states f, g, hand j, 
a typical protocol might read (and be yet another transformation!): 

Time: I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 
State: ag aj af a[ af f3f f3h f3h ah aj f3f ah f3j f3f ah f3j af 

(Parentheses have been omitted for brevity.) 

This form, though it may seem artificial and unnatural, is in fact 
typical and general. It will represent anything from the investiga
tion of an electrical network by putting in a sinusoidal voltage and 
observing the output, to a psychiatric interview at which questions 
a, ~ were put and answers g, f, h, j elicited. 

Thus, the primary data of any investigation of a Black Box con
sists of a sequence of values of the vector with two components: 

(input state, output state). 
(The possibility is not excluded that each component may itself 

be a vector (S.3/5).) 
From this there follows the fundamental deduction that all 

knowledge obtainable from a Black Box (of given input and out
put) is such as can be obtained by re-coding the protocol; all that, 
and nothing more. 

Ex.: Tabulate the transitions observed in the system that started at ay. Find some 
regularities in them. 

6/4. It will be noticed that nothing has been said about the skill of 
the experimenter in manipulating the input. The omission was 
deliberate, for no skill is called for! We are assuming, remember, 
that nothing is known about the Box, and when this is so the 
method of making merely random variations (e.g. guided by 
throws of a die) on the input-switches is as defensible as any other 
method, for no facts yet exist that could be appealed to as justifi
cation for preferring any particular method. With terrestrial 
machinery-industrial, biological, neuronic-the experimenter 
has often had previous experiences with Boxes of the same class. 
When this is so he may be able to use a method that explores what 
he does not know about the present Box more efficiently than 
some other method. (These matters, of exploring a partly known 
system, lead into questions of altogether more advanced type, and 
their consideration must be postponed; a little is said on the sub
ject in S.l3/5 and onwards.) 

6/5. Absoluteness. When a generous length of record has been 
obtained, the experimenter will look for regularities, for repeti
tiveness in the behaviour (S. 7 /19). He may notice, for instance, in 
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Ex. 6/3/1, that a j is always followed by either af or ~f-that 
although the a's transition is not single-valued, that of the j is. 

So he examines the record. Usually his first concern is to see 
whether the Box is absolute if the input state is given. He does this 
by collecting: 

(i) all the transitions that followed the input state a, sorting 
them into what g went to, what h went to, and so on through 
all the output states; 

(ii) the same for input ~; 
(iii) and so on through all the observed input states. 

What he tries, in other words, is to fill in a set of transformations 
like those of S.4/1, and he examines what he gets to see if they are 
single- valued. 

Thus, ifthe given protocol is tested, and if every one ofthe 16 
transforms is recorded, there results: 

f 
a jJJ 
f3 hhh 

g 

j 

h 

jjj 
hh 

j 

ff 
ff 

(No transition was observed from g with input at ~-) Within each 
cell the letters are all equal, so the table can be simplified to: 

f g 

a f j 
f3 h 

h j 

j f 
h f 

with a statement that throughout the protocol this closed single
valued transformation was observed. 

Thus by direct re-coding of the protocol the experimenter can 
demonstrate that the behaviour is machine-like, and he can 
deduce its canonical representation. 

It should be noticed that he has deduced it from direct observa
tion of the Box's actual behaviour. He has relied on no "bor
rowed" knowledge. Whatever he may have expected, and 
regardless of the confidence of his expectation, the final deduc
tion depends only on what actually happened. Thus, in any con
flict between what he, or others, expected and what was found, 
these empirical results are final as a statement of the Box's nature. 

Should the system not be determinate, i.e. the transformation 
not single-valued, he can proceed in either of two ways. 
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One way is to alter the set of inputs and outputs-to take more 
variables into account-and then to see if the new system (equiv
alent to a new Box, S.3111) is determinate. Thus a chemist may 
find that a system's behaviour is at first not determinate, but that 
when the presence of traces of chloride is taken into account it 
becomes determinate. A great deal of research consists of such 
searches for a suitable set of variables. 

A second way is to abandon the attempt to find strict determi
nacy and to look for statistical determinacy, i.e. determinacy in 
averages etc. The experimenter, with extensive records available, 
then studies them in long sections, to see whether, if the details are 
not predictable from step to step, the averages (or similar statis
tics) are predictable from section to section. He may find that the 
records show the statistical determinateness of the Markov chain; 
(but discussion of this will be left to Chapter 9, for until then we 
shall be concerned only with machines that are determinate from 
step to step). 

To summarise: once the protocol has been obtained, the sys
tem's determinateness can be tested, and (if found determinate) its 
canonical representation can be deduced. 

Ex. I: Deduce the kinematic graph for input at a directly from the protocol of the 
system ofS.6/3. 

Ex. 2: (Continued.) and for input at f. 

Ex. 3: A system with only one input state gave the following sequence of states 
as output: 

D G A H C L H C L H C F C ... 
Is it absolute? 

Ex. 4: A system has two variables, x andy, each of which can take the values 0, 
I or 2. The input can take two values, a or~- The protocol gave: 

Time: 2 3 4 5 6 7 8 9 10 II 12 l3 
Input: a a a a a f3 a a a a a a a 
x: l 0 0 0 0 0 l 2 2 l 0 0 0 
y: l 0 1 0 1 0 2 1 0 l 0 1 0 

Time: 14 15 16 17 18 19 20 21 22 23 24 25 
Input: f3 a a f3 f3 f3 a f3 f3 f3 a f3 
x: 0 0 I 0 I I 1 I I 2 2 1 
y: 1 2 1 0 2 1 0 1 0 0 2 1 

Is it a machine with input? 
Ex. 5: (Continued.) What is its transformation if the input is held at a? 
Ex. 6: If a machine has m input-states and n output-states, what is the least 

number of steps of observation sufficient for its complete study? 
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Ex. 7: Two Black Boxes are of identical external appearance, and each has a sin
gle input a and a single output x, each a numerical variable. They were 
labelled I and II, and their canonical representations were found to be 

I:x'=x+!-a 
II: x' = (1 + a)x-2 +a. 

Unfortunately the labels "I" and "II" have since become detached and it is 
now not known which is which. Suggest a simple test that will re- identifY 
them. 

6/6. Inaccessible states. Examination of the transformations 

f g h j 

a f i i f 
f3 h f h f 

shows that the state g, once past in the protocol, cannot be made 
to re-appear by any manipulations of the input. The transitions 
from g thus cannot be explored further or tested repeatedly. This 
fact, that certain states of the Box cannot be returned to at will, is 
very common in practice. Such states will be called inaccessible. 

In its most dramatic form it occurs when the investigation of a 
new type of enemy mine leads to an explosion-which can be 
described more abstractly by saying that the system has passed 
from a state to which no manipulation at the input can make the 
system return. Essentially the same phenomenon occurs when 
experiments are conducted on an organism that learns; for as time 
goes on it leaves its "unsophisticated" initial state, and no simple 
manipulation can get it back to this state. In such experiments, 
however, the psychologist is usually investigating not the partic
ular individual but the particular species, so he can restore the ini
tial state by the simple operation of taking a new individual. 

Thus the experimenter, if the system is determinate, must either 
restrict himself to the investigation of a set of states that is both 
closed and freely accessible, such as f, h, j in the example, or he 
must add more states to his input so that more transformations 
become available and thus, perhaps, give a transition to g. 

617. Deducing connexions. It is now clear that something of the 
connexions within a Black Box can be obtained by deduction. For 
direct manipulation and observation gives the protocol, this (if the 
system is determinate) gives the canonical representation, and this 
gives the diagram of immediate effects (one for each input state) 
(S.4/13). But we must go cautiously. 

It must be noticed that in a real system the "diagram of internal 
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connexions" is not unique. The radio set, for instance, has one dia
gram of connexions if considered electrically and another if con
sidered mechanically. An insulator, in fact, is just such a 
component as will give firm mechanical connexion while giving 
no electrical connexion. Which pattern of connexions will be 
found depends on which set of inputs and outputs is used. 

Even ifthe diagram of immediate effects is unique, it does not 
indicate a unique pattern of connexions within the Box. Thus sup
pose a Black Box has an output of two dials, x andy; and suppose 
it has been found that x dominates y. The diagram of immediate 
effects is thus 

0~0 
(in which the two boxes are parts of the whole Box). This relation
ship can be given by an infinity of possible internal mechanisms. 
A particular example occurs in the case in which relays open or 
close switches in order to give a particular network of connexions. 
It has been shown by Shannon that any given behaviour can be 
produced by an indefinitely large number of possible networks. 
Thus let x represent a contact that will be closed when the relay X 
is energised, and let x represent one that will be opened. Suppose 
similarly that another relay Y has similar contacts y andy. Sup
pose that the network is to conduct from p to q when and only 
when both X and Y are energised. 

A p---x--y-q_ 

Fig. 6/7/1 

The network A of Fig. 6/7/1, in which x andy are connected in 
series, will show the required behaviour. So also will B, and C, 
and an indefinitely large number of other networks. 

The behaviour does not specifY the connexions uniquely. 

Ex.: (Ex. 6/5/4 continued.) Deduce the diagram of immediate effects when the 
input is fixed at a. (Hint: S.4/13.) 
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ISOMORPHIC MACHINES 

6/8. Study of a Black Box can thus give the experimenter infor
mation up to a certain amount; and, if the inputs and outputs are 
given, cannot possibly be made to give more. How much informa
tion will be discussed in S. 13/15 (especially its last Ex.). Here it 
is sufficient if we notice that the canonical representation speci
fies or identifies the mechanism "up to an isomorphism". 

"Isomorphic" means, roughly, "similar in pattern". It is a con
cept of the widest range and of the utmost importance to all who 
would treat accurately of matters in which "pattern" plays a part. 
Let us consider first a few examples merely to illustrate the basic 
ideas. 

A photographic negative and the print from it are, so far as the 
pattern of the picture is concerned, isomorphic. Squares in the 
negative appear as squares in the print; circles appear as circles; 
parallel lines in the one stay as parallel lines in the other. Thus cer
tain relations between the parts within the negative appear as the 
same relations in the print, though the appearances so far as 
brightness is concerned are different, exactly opposite in fact. 
Thus the operation of changing from negative to print leaves these 
relations unaltered (compare S.5/2). 

A map and the countryside that it represents are isomorphic (if 
the map is accurate!). Relationships in the country, such as that 
towns A, B and C form an equilateral triangle, occur unchanged 
on the map, where the representative dots for A, B and C also 
form an equilateral triangle. 

The patterns need not be visual. If a stone is thrown vertically 
upwards with an initial velocity of 50 ft. per second, there is an 
isomorphism between the set of points in the air such that at time 
t the stone was h feet up and the set of those points on a graph that 
satisfY the equation 

y =SOx- 16x2• 

The lines along which air flows (at sub-sonic speeds) past an 
aerofoil form a pattern that is identical with the lines along which 
electric current flows in a conducting liquid past a non- conductor 
of the same shape as the aero foil. The two patterns are the same, 
though the physical bases are different. 

Another isomorphism is worth consideration in more detail. 
Fig. 6/8/1 shows two dynamic systems, each with an input and an 
output. In the upper one, the left-hand axle I is the input; it can be 
rotated to any position, shown on the dial u. It is connected 
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through a springS to a heavy wheel M, which is rigidly connected 
to the output shaft 0. 0' s degree of rotation is shown on the dial 
v, which is its output. The wheel dips into a trough with liquid F 
which applies a frictional force to the wheel, proportional to the 
wheel's velocity. If now, starting from given conditions, the input 
u is taken through some sequence of values, so will the output v 
pass through some determinate sequence of values, the particular 
sequence depending on v 's initial value, on v's rate of change at 
that moment, and on the sequence used for the input at u. 

Fig. 6/811 

The lower system is electrical. Its input is a potentiometer, or 
other device, J, that emits the voltage shown on the scale x. In 
series are an inductance L, a resistance R, and a capacitance C. P 
is a current meter (such as is used in domestic supplies) recording 
the sum of the currents that have passed through it. The sum is 
shown on the scale y, which is its output. 

If now the values of L, R and Care adjusted to match the stiff
ness of the spring, inertia of the wheel, and friction at F (though 
not respectively), then the two systems can show a remarkable 
functional identity. Let them both start from rest. Apply any 
input-sequence of values at u, however long and arbitrary, and get 
an output sequence at v, of equal length: if the same sequence of 
values is given at x, the output at y will be identical, along its 
whole length with that at v. Try another input sequence to u and 
record what appears at v: the same input given to x will result in 
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an output at y that copies that at v. Cover the central parts of the 
mechanism and the two machines are indistinguishable through
out an infinite number of tests applied. Machines can thus show 
the profoundest similarities in behaviour while being, from other 
points ofview, utterly dissimilar. 

Nor is this all. Well known to mathematicians are equations of 
the type 

d2z dz 
a-+b-+cz = w 

dt2 dt 

by which, if a graph is given showing how w varied with time (t), 
the changes induced in z can be found. Thus w can be regarded as 
an "input" to the equation and zan "output". If now a, b, and care 
given values suitably related to L, R, S, etc., the relation between 
w and z becomes identical with those between u and v, and 
between x andy. All three systems are isomorphic. 

The great practical value of isomorphisms is now becoming 
apparent. Suppose the problem has arisen how the mechanical 
system will behave under certain conditions. Given the input u, 
the behaviour v is required. The real mechanical system may be 
awkward for direct testing: it may be too massive, or not readily 
accessible, or even not yet made! If, however, a mathematician is 
available, the answer can be found quickly and easily by finding 
the output z of the differential equation under input w. It would be 
said, in the usual terms, that a problem in mathematical physics 
had been solved. What should be noticed, however, is that the 
process is essentially that of using a map--of using a convenient 
isomorphic representation rather than the inconvenient reality. 

It may happen that no mathematician is available but that an 
electrician is. In that case, the same principle can be used again. 
The electrical system is assembled, the input given to x, and the 
answer read off at y. This is more commonly described as "build
ing an electrical model". 

Clearly no one of the three systems has priority; any can substi
tute for the others. Thus if an engineer wants to solve the differ
ential equation, he may find the answer more quickly by building 
the electrical system and reading the solutions at y. He is then usu
ally said to have "built an analogue computer". The mechanical 
system might, in other circumstances, be found a more convenient 
form for the computer. The big general-purpose digital computer 
is remarkable precisely because it can be programmed to become 
isomorphic with any dynamic system whatever. 

The use of isomorphic systems is thus common and important. 
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It is important because most systems have both difficult and easy 
patches in their properties. When an experimenter comes to a dif
ficult patch in the particular system he is investigating he may if 
an isomorphic form exists, find that the corresponding patch in the 
other form is much easier to understand or control or investigate. 
And experience has shown that the ability to change to an isomor
phic form, though it does not give absolutely trustworthy evi
dence (for an isomorphism may hold only over a certain range), is 
nevertheless a most useful and practical help to the experimenter. 
In science it is used ubiquitously. 

6/9. It must now be shown that this concept of isomorphism, vast 
though its range of applicability, is capable of exact and objective 

0(. (3 s E 

~ b 0 ~ b 

~ 1~ 1~,~ d~! d.¢c k j 

Fig. 6/911 

definition. The most fundamental definition has been given by 
Bourbaki; here we need only the form suitable for dynamic sys
tems It applies quite straightforwardly once two machines have 
been reduced to their canonical representations. 

Consider, for instance, the two simple machines M and N, with 
canonical representations 

a 

a a 
M: f3 b 

b 

c 

a 

c 

d 

d 

d 

c 

c 

8 
N: E 

g h 

k j 

k h 

j 

h 

g 

k 

g 

g 

They show no obvious relation. If, however, their kinematic 
graphs are drawn, they are found to be as in Fig. 6/9/1. Inspection 
shows that there is a deep resemblance. In fact, by merely rear
ranging the points inN without disrupting any arrow (S.2/17) we 
can get the form shown in Fig. 6/9/2. 
These graphs are identical with Ms graphs, apart from the label
ling. 

More precisely: the canonical representations of two machines 
are isomorphic if a one-one transformation of the states (input and 
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output) of the one machine into those of the other can convert the 
one representation to the other. 

Thus, in the example given, apply the one-one transformation P 

Pt 8 £ g h j k 
· f3acabd 

toNs table, applying it to the borders as well as to the body. The 
result is 

~ c a b d 

f3 d b a c 

a d a c c 

This is essentially the same as M Thus, c and f3 in the border give 

€ s 

~ ~ h .. ,.J 

1t 4 .9 lc.. !J 

Fig. 6/9/2 

din both. The isomorphism thus corresponds to the definition. 
(The isomorphism can be seen more clearly if first the rows are 
interchanged, to 

c a b d 

a d a c c 
f3 d b a c 

and then the columns interchanged, to 

t a b c d 

a a c d c 
f3 b a d c 

but this re-arrangement is merely for visual convenience.) 
When the states are defined by vectors the process is essentially 

unchanged. Suppose RandS are two absolute systems: 

R: { x' = x + y { u' =- u- v 
y' = x - y S: v' =- u + v 

98 



The transformation P: 

THE BLACK BOX 

P:~ u 
y 

v 
-X 

is a shorthand way of describing the one-one transformation that 
pairs off states inS and R thus: 

in S, (2,3) against (-3,2) in R 

" '' (1 ,0) (0, 1) " " 

" " (4,5) (-5,4) " " 
" " (-3,0) (0,-3) " " 

I.e. 
" '' 

(u,v) (-v,u) , , 

(Compare U of S.4/9.) Apply P to all the description of S; the 
result is 

{ y' =-y+x 
-x' =-y-x 

which is algebraically identical with R. So RandS are isomorphic. 

Ex. 1: What one-one transformation will show these absolute systems to be iso
morphic? 

Y: { a 
c 

b 
c 

c d e 
d d b 

Z: { p q 
r q 

r s 
q p r 

(Hint: Try to identify some characteristic feature, such as a state of equilib
rium.) 

Ex. 2: How many one-one transformations are there that will show these absolute 
systems to be isomorphic? 

A: t ~ ~ ~ B: 1 P q r 
r p q 

*Ex. 3: Write the canonical equations of the two systems of Fig. 6/8/1 and show 
that they are isomorphic. (Hint: How many variables are necessary if the sys
tem is to be a machine with input ?) 

Ex. 4: Find a re-labelling of variables that will show the absolute systems A and 
B to be isomorphic. 

{ 
x'=-x2 +y 

A: y' =-x2 -y 
z'=y2 +z 

{ 
u' =w2 + u 

B: v' =-v2 + w 
w' =-v2 -w 

(Hint: On the right side of A one variable is mentioned only once; the same 
is true of B. Also, in A, only one of the variables depends on itself quadrat
ically, i.e. if of the form a'=± a2 ••• ; the same is true of B.) 

6/10. The previous section showed that two machines are isomor
phic if one can be made identical to the other by simple relabel
ling. The "re-labelling", however, can have various degrees of 
complexity, as we will now see. 
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The system that is specified only by states, as in the previous 
section, contains no direct reference either to parts or to variables. 
In such a case, "re-labelling" can mean only "re-labelling the 
states". A system with parts or variables, however, can also be 
re-labelled at its variables-by no means the same thing. Relabel
ling the variables, in effect, re-labels the states but in a way sub
ject to considerable constraint (S.7 /8), whereas the re-labelling of 
states can be as arbitrary as we please. So a re-labelling of the 
states is more general than a re-labelling of the variables. 

Thus suppose a system has nine states; an arbitrary re-labelling 
of eight of the states does not restrict what label shall be given to 
the ninth. Now suppose that the system has two variables, x and 
y, and that each can take three values: x1, x2, x3 andy 1, y2, y3. Nine 
states are possible, of which two are (xby3) and (x3,y1). Suppose 
this system is re-labelled in its variables, thus 

If now (xby3) is transformed to some state (a,~), and (x3,y1) is 
transformed to (y,8), then, for consistency, the state (x2,y 1) must 
transform to ( a,8). (Draw the phase spaces and identify the values 
on the ~ and 11 axes.) Thus the nine states now cannot be trans
formed arbitrarily and independently. A re-labelling of the varia
bles offers less scope for change than a re-labelling of states. 

As a result, certain features that are destroyed by a re-labelling 
of states are preserved by a re-labelling ofvariables. Among them 
is the diagram of immediate effects. 

The system described by its states has, of course, no such dia
gram, for it has in effect only one variable. A system with varia
bles, however, has a diagram of immediate effects. The 
phase-space now has axes; and it is easily seen, after a few trials, 
that a one-one transformation that re- labels the variables, changes 
the diagram of immediate effects only to the extent of a "button 
and string" change; turning, say, A into B: 

A B [ZJ 

[li]"' [l] ;/ 1 
1 ~0 
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Ex. I: (Ex. 6/9/4 continued.) Compare the diagram of immediate effects of A and 
B. 

Ex. 2: Mark the following properties of an absolute system as changed or 
unchanged by a re-labelling of its states: (i) The number of basins in its 
phase-space; (ii) whether it is reducible; (iii) its number of states of equilib
rium; (iv) whether feedback is present; (v) the number of cycles in its 
phase-space. 

Ex. 3: (Continued.) How would they be affected by a re-labelling of variables? 

6/11. The subject of isomorphism is extensive, and only an intro
duction to the subject can be given here. Before we leave it, how
ever, we should notice that transformations more complex than a 
simple re-labelling of variables can change the diagram of imme
diate effects. Thus the systems 

A. { x' = 1 /2(x2 + /) + xy + y { u' =- u 
· y' = 1/2(x2 + /) + xy + x B: v' = v + v2 

are isomorphic under the one-one transformation 

P:{ 
Yet A's diagram is 

while B's diagram is 

u =x-y 
v =x+y 

00 
i.e. two unconnected variables. 

The "method of normal co-ordinates", widely used in mathe
matical physics, consists in applying just such a transformation as 
will treat the system not in its obvious form but in an isomorphic 
form that has all its variables independent. In this transformation 
the diagram of immediate effects is altered grossly; what is 
retained is the set of normal modes, i.e. its characteristic way of 
behaving. 

Such a transformation (asP above), that forms some function 
of the variables (i.e. x-y) represents, to the experimenter, more 
than a mere re-labelling of the x-, y-output dials. It means that the 
Box's output of x andy must be put through some physical appa
ratus that will take x and y as input and will emit x-y and x + y 
as new outputs. This combining corresponds to a more complex 
operation than was considered in S.6/1 0. 

Ex.: Show that A and B are isomorphic. (Hint: (x-y)' = x'-y': why?) 
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HOMOMORPHIC MACHINES 

6/12. The definition given for isomorphism defines "equality" in 
the strictest sense-it allows that two machines (or two Black 
Boxes) are "equal" only when they are so alike that an accidental 
interchange of them would be subsequently indetectable, at least 
by any test applied to their behaviours. 

There are, however, lesser degrees of resemblance. Thus two 
pendulums, one beating seconds and the other half-seconds, are 
obviously similar, yet they are not isomorphic in the strict sense. 
There is, however, some similarity, which is shown by the fact 
that they become isomorphic if they are measured on separate 
timescales, the one having half the values of the other. 

Two machines may also be related by a "homomorphism." This 
occurs when a many-one transformation, applied to the more 
complex, can reduce it to a form that is isomorphic with the sim
pler. Thus the two machines M and N 

a b c d e 

-m-t b a b c a h 
j 

N: 
a b c b c 

M: 
k a b b e d 
l b c a e e 

may seem at first sight to have little resemblance. There is, how
ever, a deep similarity. (The reader will gain much if he reads no 
further until he has discovered, if only vaguely, where the similar
ity lies; notice the peculiarity of N's table, with three elements 
alike and one different-can anything like that be seen in the table 
ofM7.-ifcut into quadrants?) 

Transform M by the many-one transformation T: 

rt a b c d e i j k l 
· hhhggf3f3aa 

(which is single-valued but not one-one as in S.6/9) and we get 

t h h h g g 

f3 h h h h h 
f3 h h h h h 

a h h h g g 
a h h h g g 
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It will be found that the repetitions do not contradict one another, 
and that the table can equally well be given as 

t h 

which is isomorphic with N. 

h 

g 

Examination ofM shows now where the resemblance toN lies. 
Within M the transitions occur in blocks; thus a, b and c always 
go to some one of a, b or c. And the blocks in M undergo transi
tions in the same way as the states inN. N is thus equivalent to a 
simplified version ofM. 

The relation can be displayed in another way. Suppose first the 
two machines are viewed by some one who can distinguish all the 
five states of M; he will report simply that M is different from N 
(i.e. not isomorphic) and more complex. Suppose next that they 
are viewed by some observer with less power of discrimination, 
one who cannot discriminate between a, b, and c, but lumps them 
all together as, say, A; and who also lumps d and e together as B, 
i and j as I', and k and I as d. This new observer, seeing this sim
plified version ofM, will report that it is isomorphic with N. Thus 
two machines are homomorphic when they become alike if one is 
merely simplified, i.e. observed with less than full discrimination. 

Formally, if two machines are so related that a many-one trans
formation can be found that, applied to one of the machines, gives 
a machine that is isomorphic with the other, then the other (the 
simpler of the two) is a homomorphism of the first. 

Ex.: Is isomorphism simply an extreme case ofhomomorphism? 
Problem: What other types of homomorphism are there between machine 
and machine? 

6/13. If the methods of this book are to be applied to biological 
systems, not only must the methods become sufficiently complex 
to match the systems but the systems must be considerably sim
plified if their study is ever to be practical. No biological system 
has yet been studied in its full complexity, nor is likely to be for a 
very long time. In practice the biologist always imposes a tremen
dous simplification before he starts work: if he watches a bird 
building its nest he does not see all the intricate pattern of detailed 
neuronic activities in the bird's brain; if he studies how a lizard 
escapes from its enemies he does not observe the particular 
molecular and ionic changes in its muscles; if he studies a tribe at 
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its council meeting he does not observe all the many detailed 
processes going on in the individual members. The biologist thus 
usually studies only a small fraction of the system that faces him. 
Any statement he makes is only a half-truth, a simplification. To 
what extent can systems justifiably be simplified? Can a scientist 
work properly with half-truths? 

The practical man, of course, has never doubted it. Let us see 
whether we can make the position clear and exact. 

Knowledge can certainly be partial and yet complete in itself. 
Perhaps the most clear-cut example occurs in connexion with 
ordinary multiplication. The complete truth about multiplication 
is, of course, very extensive, for it includes the facts about all pos
sible pairs, including such items as that 

14792 X 4,183584 = 61883,574528. 

There is, however, a much smaller portion of the whole which 
consists simply in the facts that 

Even 
Even 
Odd 
Odd 

x Even 
X Odd 
x Even 
X Odd 

=Even 
=Even 
=Even 
= Odd 

What is important here is that though this knowledge is only an 
infinitesimal fraction of the whole it is complete within itself. (It 
was, in fact, the first homomorphism considered in mathematics.) 
Contrast this completeness, in respect of Even and Odd, with the 
incompleteness shown by 

2 X 2 4 
2 X 4 8 
4 X 2 8 
4 X 4 16 

which leaves unmentioned what is 4 x 8, etc. Thus it is perfectly 
possible for some knowledge, though partial in respect of some 
larger system, to be complete within itself, complete so far as it 
goes. 

Homomorphisms may, as we have seen, exist between two dif
ferent machines. They may also exist within one machine: 
between the various possible simplifications of it that still retain 
the characteristic property of being machine-like (S.3/1). Sup
pose, for instance, that the machine were A: 

1abcde 
A: t e b a b e 
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This is the machine as seen by the first observer (call him One). 
Suppose now that another observer (call him Two) was unable to 
distinguish states a and d, and also unable to distinguish b and e. 
Let us give the states new names for clarity: 

a d c b e 
~ 123 123 

K L M 
The second observer, seeing states K, L or M would find the 
machine's behaviour determinate. Thus when at K (really a or d) 
it would always go to M (either b or e), and so on. He would say 
that it behaved according to the closed transformation 

I K L M 
t M K M 

and that this was single-valued, and thus determinate. 
The new system has been formed simply by grouping together 

certain states that were previously distinct, but it does not follow 
that any arbitrary grouping will give a homomorphism. Thus sup
pose yet another observer Three could distinguish only two states: 

a b c d e 
~ 14243 123 

p Q 
He would find that P changed sometimes to Q (when P was really 
at a) and sometimes toP (whenP was really at bore). The change 
from P is thus not single-valued, and Three would say that the 
machine (with states P and Q) was not determinate. He would be 
dissatisfied with the measurements that led to the distinction 
between P and Q and would try to become more discriminating, 
so as to remove the unpredictability. 

A machine can thus be simplified to a new form when its states 
are compounded suitably. Scientific treatment of a complex sys
tem does not demand that every possible distinction be made. 

Ex. 1: What homomorphism combines Odd and Even by the operation of addi
tion? 

Ex. 2: Find all possible simplifications of the four-state system 

t a b c d 
b b d c 

which leaves the result still a determinate machine. 
Ex. 3: What simplification is possible in 

1 ;: : ;l+y, 

if the result is still to be a determinate machine ? 
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6/14. The deliberate refusal to attempt all possible distinctions, 
and the deliberate restriction of the study of a dynamic system to 
some homomorphism of the whole, become justified, and in fact 
almost unavoidable, when the experimenter is confronted with the 
system of biological origin. 

We usually assumed, in the earlier chapters, that the observer 
knew, at each moment, just what state the system was in. It was 
assumed, in other words, that at every moment his information 
about the system was complete. There comes a stage, however, as 
the system becomes larger and larger, when the reception of all 
the information is impossible by reason of its sheer bulk. Either 
the recording channels cannot carry all the information, or the 
observer, presented with it all, is overwhelmed. When this occurs, 
what is he to do? The answer is clear: he must give up any ambi
tion to know the whole system. His aim must be to achieve a par
tial knowledge that, though partial over the whole, is none the less 
complete within itself, and is sufficient for his ultimate practical 
purpose. 

These facts emphasise an important matter of principle in the 
study of the very large system. Faced with such a system, the 
observer must be cautious in referring to "the system", for the 
term will probably be ambiguous, perhaps highly so. "The sys
tem" may refer to the whole system quite apart from any observer 
to study it- the thing as it is in itself; or it may refer to the set of 
variables (or states) with which some given observer is con
cerned. Though the former sounds more imposing philosophi
cally, the practical worker inevitably finds the second more 
important. Then the second meaning can itself be ambiguous if 
the particular observer is not specified, for the system may be any 
one of the many sub-machines provided by homomorphism. Why 
all these meanings should be distinguished is because different 
sub-machines can have different properties; so that although both 
sub-machines may be abstracted from the same real "thing", a 
statement that is true of one may be false of another. 

It follows that there can be no such thing as the (unique) behav
iour of a very large system, apart from a given observer. For there 
can legitimately be as many sub-machines as observers, and 
therefore as many behaviours, which may actually be so different 
as to be incompatible if they occurred in one system. Thus the 
5-state system with kinematic graph 

h ~ k m---7/~j 

has two basins, and always ends in a cycle. The homomorphic 
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sub-machine (with states rands) given by the transformation 

I h b j k l 
t ~ '--y-J 

r s 
has graph s ~ r, with one basin and no cycle. Both statements are 
equally true, and are compatible because they refer to different 
systems (as defined in S.3/ll). 

The point of view taken here is that science (as represented by 
the observer's discoveries) is not immediately concerned with 
discovering what the system "really" is, but with co-ordinating 
the various observers' discoveries, each of which is only a por
tion, or an aspect, of the whole truth. 

Were the engineer to treat bridgebuilding by a consideration of 
every atom he would find the task impossible by its very size. He 
therefore ignores the fact that his girders and blocks are really 
composite, made of atoms, and treats them as his units. As it hap
pens, the nature of girders permits this simplification, and the 
engineer's work becomes a practical possibility. It will be seen 
therefore that the method of studying very large systems by stud
ying only carefully selected aspects of them is simply what is 
always done in practice. Here we intend to follow the process 
more rigorously and consciously. 

6/15. The lattice. The various simplifications of a machine have 
exact relations to one another Thus, the six forms of the system of 
Ex. 6/13/2 are: 

(1) a, b, c, d 
(2) a+ b, c, d 
(3) a, b, c + d 
(4)a+b,c+d 
(5) a, b + c + d 
(6) a+ b + c + d 

where, e.g. "a+ b" means that a and bare no longer distinguished. 
Now (4) can be obtained from (3) by amergingofaand b. But (5) 
cannot be obtained from ( 4) by a simple merging; for ( 5) uses a 
distinction between a and b that has been lost in (4). Thus it is 
soon verified that simplification can give: 

from (1 ): all the other five, 
, (2): ( 4) and (6), 

(3): (4), (5) and (6), 
(4): (6), 
(5): (6), 
(6): none. 
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The various simplifications are thus related as in the diagram, in 
which a descending line connects the simpler form (below) with 
the form from which it can be directly obtained (above): 

I \ 
2 3 

I /I 
4 5 

\ I 
6 

This diagram is of a type known as a lattice-a structure much 
studied in modern mathematics. What is of interest in this Intro
duction is that this ordering makes precise many ideas about sys
tems, ideas that have hitherto been considered only intuitively. 

Every lattice has a single element at the top (like 1) and a single 
element at the bottom (like 6). When the lattice represents the pos
sible simplifications of a machine, the element at the top corre
sponds to the machine with every state distinguished; it 
corresponds to the knowledge of the experimenter who takes note 
of every distinction available in its states. The element at the bot
tom corresponds to a machine with every state merged; if this 
state is called Z the machine has as transformation only 

This transformation is closed, so something persists (S.l 0/4 ), and 
the observer who sees only at this level of discrimination can say 
ofthe machine: "it persists", and can say no more. This persist
ence is, of course, the most rudimentary property of a machine, 
distinguishing it from the merely evanescent. (The importance of 
"closure", emphasised in the early chapters, can now be appreci
ated -it corresponds to the intuitive idea that, to be a machine, an 
entity must at least persist.) 

Between these extremes lie the various simplifications, in their 
natural and exact order. Near the top lie those that differ from the 
full truth only in some trifling matter. Those that lie near the bot
tom are the simplifications of the grossest type. Near the bottom 
lies such a simplification as would reduce a whole economic sys-
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tern with a vast number of interacting parts, going through a trade 
cycle, to the simple form of two states: 

I 
Boom 

t 

\It 
Slump 

I 
Thus, the various simplifications of a dynamic system can 

ordered and related. 

6/16. Models. We can now see much more clearly what is meant 
by a "model". The subject was touched on in S.6/8, where three 
systems were found to be isomorphic and therefore capable of 
being used as representations of each other. The subject is some 
of importance to those who work with biological systems, for in 
many cases the use of a model is helpful, either to help the worker 
think about the subject or to act as a form of analogue computer. 

The model will seldom be isomorphic with the biological sys
tem: usually it will be a homomorphism of it. But the model is 
itself seldom regarded in all its practical detail: usually it is only 
some aspect of the model that is related to the biological system; 
thus the tin mouse may be a satisfactory model of a living 
mouse-provided one ignores the tinniness of the one and the 
proteinness of the other. Thus what usually happens is that the two 
systems, biological and model, are so related that a homomor
phism of the one is isomorphic with a homomorphism of the 
other. (This relation is symmetric, so either may justifiably be said 
to be a "model" of the other.) The higher the homomorphisms are 
on their lattices, the better or more realistic will be the model. 

At this point this Introduction must leave the subject of Homo
morphisms. Enough has been said to show the foundations of the 
subject and to indicate the main lines for its development. But 
these developments belong to the future. 

Ex. 1: What would be the case when it was the two top-most elements of the two 
lattices that were isomorphic? 

Ex. 2: To what degree is the Rock of Gibraltar a model of the brain? 
Ex. 3: To what extent can the machine 

~ p q r 
q r r 

provide models tor the system of Ex. 6/13/2? 

THE VERY LARGE BOX 

6/17. The previous sections have shown how the properties that are 
usually ascribed to machines can also be ascribed to Black Boxes. 
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We do in fact work, in our daily lives, much more with Black 
Boxes than we are apt to think. At first we are apt to think, for 
instance, that a bicycle is not a Black Box, for we can see every 
connecting link. We delude ourselves, however. The ultimate links 
between pedal and wheel are those interatomic forces that hold the 
particles of metal together; of these we see nothing, and the child 
who learns to ride can become competent merely with the knowl
edge that pressure on the pedals makes the wheels go round. 

To emphasise that the theory of Black Boxes is practically 
coextensive with that of everyday life, let us notice that if a set of 
Black Boxes has been studied by an observer, he is in a position 
to couple them together to form designed machinery. The method 
is straightforward: as the examination of each Box has given its 
canonical representation (S.6/5), so can they be coupled, inputs to 
outputs, to form new systems exactly as described in S.4/8. 

What is being suggested now is not that Black Boxes behave 
somewhat like real objects but that the real objects are in fact all 
Black Boxes, and that we have in fact been operating with Black 
Boxes all our lives. The theory of the Black Box is merely the the
ory of real objects or systems, when close attention is given to the 
question, relating object and observer, about what information 
comes from the object, and how it is obtained. Thus the theory of 
the Black Box is simply the study of the relations between the 
experimenter and his environment, when special attention is given 
to the flow of information. "A study of the real world thus 
becomes a study of transducers." (Goldman, Information theory.) 

6/18. Before we go further, the question of"emergent" properties 
should be clarified. 

First let one fact be established. If a number of Black Boxes are 
given, and each is studied in isolation until its canonical represen
tation is established, and if they are coupled in a known pattern by 
known linkages, then it follows (S.4/8) that the behaviour of the 
whole is determinate, and can be predicted. Thus an assembly of 
Black Boxes, in these conditions, will show no "emergent" prop
erties; i.e. no properties that could not have been predicted from 
knowledge of the parts and their couplings. 

The concept of"emergence" has never been defined with pre
cision, but the following examples will probably suffice as a basis 
for discussion: 

(1) Ammonia is a gas, and so is hydrogen chloride. When the 
two gases are mixed, the result is a solid-a property not pos
sessed by either reactant. 
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(2) Carbon, hydrogen and oxygen are all practically tasteless, yet 
the particular compound "sugar" has a characteristic taste pos
sessed by none of them. 

(3) The twenty (or so) amino-acids in a bacterium have none of 
them the property ofbeing "self-reproducing", yet the whole, with 
some other substances, has this property. 

If these examples are compared in detail with the processes of 
study and coupling of Black Boxes, it is soon seen that the exam
ples postulate much less knowledge of their parts than is postu
lated of the Black Boxes. Thus the prediction in regard to 
ammonia and hydrogen chloride is based on no more knowledge 
of each substance than that it is a gas. Similarly, of the twenty 
amino-acids all that is asked is "is it self- reproducing?" Were 
each amino-acid treated as a Black Box the examination would be 
far more searching. The input to a molecule is the set of electrical 
and mechanical forces, in all distributions and combinations, that 
can affect it; and its output is the set of all states, electrical and 
mechanical, that it can be in. Were this complete knowledge 
available, then the method of S.4/8 shows how the behaviour of 
many coupled amino-acids could be predicted; and among the 
predicted behaviours would be that of self-reproduction of the 
whole. 

It will be seen that prediction of the whole's behaviour can be 
based on complete or on incomplete knowledge of the parts. If the 
knowledge is complete, then the case is that of the Black Box 
whose canonical representation is known, the inputs or circum
stances being all those that may be given by the other Boxes to 
which it is to be coupled. When the knowledge of the parts is so 
complete, the prediction can also be complete, and no extra prop
erties can emerge. 

Often, however, the knowledge is not, for whatever reason, 
complete. Then the prediction has to be undertaken on incomplete 
knowledge, and may prove mistaken. Sometimes all that is known 
of the parts is that every one has a certain characteristic. There 
may be no better way of predicting than to use simple extrapola
tion -to predict that the whole will have it. Sometimes this 
proves justified; thus, if a whole is ofthree parts, each of pure cop
per, then we shall be correct if we predict that the whole is of pure 
copper. But often the method fails, and a new property can, if we 
please, be said to "emerge". 

It does in fact very commonly happen that when the system 
becomes large, so that the range of size from part to whole is very 
large, the properties of the whole are very different from those of 
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the parts. Biological systems are thus particularly likely to show 
the difference. We must therefore be on guard against expecting 
the properties of the whole to reproduce the properties of the parts, 
and vice versa. 

The examples of ammonium chloride and sugar mentioned 
above are simple examples, but more complex cases occur. Con
sider, for instance, the concept of"localisation" of some function 
in a system. It may well happen that the view taken when the mat
ter is examined in the small is quite different from that taken in the 
large. Thus suppose it is asked whether the brewing industry in 
England is localised. The Exciseman, knowing of every building 
in his district whether it is or is not part of the brewing trade, will 
say that brewing is undoubtedly "localised". On the other hand, 
the map-maker of England, being unable to mark any particular 
county as being the seat of brewing, will say that it is not local
ised. Each, of course, is correct. What allows the contradiction is 
that when the range of size is great, what is true at one end of the 
scale may be false at the other. 

Another example showing how contradictory may be the proper
ties in the small and the large is given by an ordinary piece of elas
tic. For years physical chemists searched for what made the 
molecule contractile. They have since discovered that they were 
making exactly the mistake that this section is attempting to pre
vent. It is now known that the rubber molecule has no inherent con
tractility: stretch one out and let it go, and nothing happens! Why 
then does rubber contract ? The point is that "stretching rubber" is 
not "stretching one ... "; the molecules, when there are more than 
one, jostle each other and thereby force the majority to take lengths 
less than their maxima. The result is that a shortening occurs, just as 
if, on a crowded beach, a rope fifty feet long is drawn out straight: 
after a few minutes the ends will be less than fifty feet apart! 

Further examples are hardly necessary, for the point to be made 
is the merely negative one that in a large system there is no a priori 
necessity for the properties of the whole to be a simple copy of 
those of the parts. (S.7/3 adds some further examples.) 

6/19. As the system becomes larger, so does the fundamental 
method of study (S.6/3) become more laborious in application. 
Eventually the amount of labour necessary becomes prohibitive. 
What then is the observer to do? The question is of great impor
tance in the biological sciences, whether zoological or sociologi
cal, for the size and complexity of the systems is great indeed. 

The same difficulty has occurred in other sciences. Thus 
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although the Newtonian theory has, in principle, solved all gravi
tational problems, yet its application to three bodies is most com
plex, and its application to half a dozen is prohibitively laborious. 
Yet astrophysicists want to ask questions about the behaviour of 
star clusters with 20,000 members! What is to be done? 

Experience has shown that in such cases the scientist must be 
very careful about what questions he asks. He must ask for what 
he really wants to know, and not for what he thinks he wants. Thus 
the beginner will say simply that he wants to know what the clus
ter will do, i.e. he wants the trajectories of the components. If this 
knowledge, however, could be given to him, it would take the 
form of many volumes filled with numerical tables, and he would 
then realise that he did not really want all that. In fact, it usually 
happens that the significant question is something simple, such as 
"will the cluster contract to a ball, or will it spread out into a disc?" 

The physicists, led originally by Poincare, have now a well 
developed method for dealing with such matters-that of topol
ogy. By its means, unambiguous answers can be given to simple 
questions, so that the intricacies that would overwhelm the 
observer are never encountered. 

A similar method, applied to complicated differential equa
tions, enables the main important features of the solutions to be 
deduced in cases where the full solutions would be unmanageably 
complicated. This is the so-called "stability" theory of these equa
tions. 

What is important for us here is that these methods exist. They 
suggest that if a Black Box (such as a brain) has far too many var
iables for a study in every detail to be practical then it should be 
possible for the cybernetically-minded psychologist to devise a 
"topological" approach that shall enable him to get what informa
tion he really wants (not what he thinks he wants!) without his 
being overwhelmed with useless detail. Lewin attempted such a 
psychology; but in the '30s topology was not yet developed to be 
a useful tool. In the '50s, however, it is much better developed, 
especially in the form published under the pseudonym of Nicholas 
Bourbaki, by the French School. At last we have before us the 
possibility of a psychology that shall be at once rigorous and prac
tical. 

THE INCOMPLETELY OBSERVABLE BOX 

6/20. So far, in this chapter, we have assumed that the observer of 
the Black Box has the necessary means for observing all that per
tains to the Box's state, so that he is like a Ship's Engineer (S.6/2) 
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who faces a complete set of dials. Often, however, this is not so-
some of the dials are hidden, or missing-and an important part of 
Black Box theory is concerned with making clear what peculiari
ties appear when the observer can observe only certain compo
nents of the whole state. 

The theoretical developments are large, and little explored. 
They will almost certainly be of importance in psychology; for, to 
the psychologist, the individual subject, whether a neurotic person 
or a rat in a maze, is largely a system that is not wholly observa
ble; for the events in the subject's brain are not directly observable 
at the clinical or experimental session. 

It should be noticed that as soon as some of a system's variables 
become unobservable, the "system" represented by the remainder 
may develop remarkable, even miraculous, properties. A com
monplace illustration is given by conjuring, which achieves 
(apparently) the miraculous, simply because not all the significant 
variables are observable. It is possible that some of the brain's 
"miraculous" properties--of showing "foresight", "intelligence", 
etc.-are miraculous only because we have not so far been able to 
observe the events in all the significant variables. 

6/21. As an example of the profound change that may occur in the 
observer's opinion about a mechanism if part of it becomes inac
cessible to direct observation, consider the following example. 

The observer is assumed to be studying a Black Box which con
sists of two interacting parts, A and Z. Both are affected by the 
common input I. (Notice that A's inputs are 1 and Z.) 

)'IIAl 
QJ'lr' 
~0 

Suppose the important question is whether the part A does or does 
not show some characteristic behaviour B (i.e. follow trajectory 
B). Suppose this is shown (followed) only on the simultaneous 
occurrence of 

(1) I at state a 
and (2) Z at state y. 

Suppose that Z is at state y only after 1 has had the special value 1-l· 
We (author and reader) are omniscient, for we know everything 

about the system. Let us, using full knowledge, see how two 
observers (One and Two) could come to different opinions ifthey 
had different powers of observation. 
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Observer One can see, like us, the values of both A and Z. He 
studies the various combinations that may lead to the appearance 
of B, and he reports that B appears whenever the whole shows a 
state with Z at y and the input at a. Thus, given that the input is at 
a, he relates the occurrence ofB to whether Z is at y now. 

Observer Two is handicapped-he can see only I and A, not Z. 
He will find that knowledge of A's state and ofT's state is not suf
ficient to enable him to predict reliably whether B will be shown; 
(for sometimes Z will be at y and sometimes at some other state). 
If however Two turns his attention to earlier events at I he finds 
he can predict B's appearance accurately. For ifl has in succes
sion the values f.l, a then behaviour B will appear, and not other
wise. Thus, given that the input is at a, he relates the occurrence 
ofB to whether I did have the value f.l earlier. 

Thus Two, being unable to observe Z directly, can none the less 
make the whole predictable by taking into account earlier values 
of what he can observe. The reason is, the existence of the corre
spondence: 

I at f.l earlier f-7 Z at y now 
I not at f.l earlier f-7 Z not at y now. 

As this correspondence is one-one, information about F s state a step 
earlier and information about Z' s state now are equivalent, and each 
can substitute for the other; for to know one is to know the other. 

If One and Two are quarrelsome, they can now fall into a dis
pute. One can maintain that the system shows no "memory", i.e. 
its behaviour requires no reference to the past, because the appear
ance of behaviour B can be fully accounted for by the system's 
present state (at I, A and Z). Two can deny this, and can point out 
that the system ofT and A can be shown as determinate only when 
past values of 1 are taken into account, i.e. when some form of 
"memory" is appealed to. 

Clearly, we need not take sides. One and Two are talking of dif
ferent systems (ofT +A + Z or ofT +A), so it is not surprising that 
they can make differing statements. What we must notice here is 
that Two is using the appeal to "memory" as a substitute for his 
inability to observe Z. 

Thus we obtain the general rule: If a determinate system is only 
partly observable, and thereby becomes (for that observer) not 
predictable, the observer may be able to restore predictability by 
taking the system's past history into account, i.e. by assuming the 
existence within it of some form of "memory". 

The argument is clearly general, and can be applied equally 
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well if the special, earlier, event ().l) occurred not one step earlier, 
but many. Thus in general, if earlier events E1, E2, ... , Ek leave 
traces T1, T2, ••. , Tk respectively, which persist; and if later the 
remainder of the system produces behaviours B1, B2, ••• , Bk cor
responding to the value ofT, then the various behaviours may be 
related to, or explained by, either 

(1) the present value ofT, in which case there is no need for the 
invocation of any "memory", or 

(2) the past value ofE, in which case the observer is compelled 
to postulate some form of "memory" in the system. 

Thus the possession of "memory" is not a wholly objective prop
erty of a system-it is a relation between a system and an observer; 
and the property will alter with variations in the channel of com
munication between them. 

Thus to invoke "memory" in a system as an explanation of its 
behaviour is equivalent to declaring that one cannot observe the 
system completely. The properties of "memory" are not those of 
the simple "thing" but the more subtle "coding". 

*Ex. 1: Prove the statement (Design . . S.l9/22) that in an absolute system we can 
avoid direct reference to some of the variables provided we use derivatives 
of the remaining variables to replace them. 

*Ex. 2: Prove the same statement about equations in finite differences. 
*Ex. 3: Show that if the system has n degrees of freedom we must, in general, 

always have at least n observations, each of the type "at time t1 variable xi 
had value X;" if the subsequent behaviour is to be predictable. 

6/22. A clear example showing how the presence of"memory" is 
related to the observability of a part is given by the digital calcu
lator with a magnetic tape. Suppose, for simplicity, that at a cer
tain moment the calculator will produce a I or a 2 according to 
whether the tape, at a certain point, is magnetised + or-, respec
tively; the act of magnetisation occurred, say, ten minutes ago, 
and whether it was magnetised + or-depended on whether the 
operator did or did not, respectively, close a switch. There is thus 
the correspondence: 

switch closed H+H I 
switch open H-H2 

An observer who can see the magnetic tape now can argue that 
any reference to the past is unnecessary, for he can account for the 
machine's behaviour (i.e. whether it will produce a 1 or a 2) by its 
state now, by examining what the tape carries now. Thus to know 
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that it carries a + now is sufficient to allow prediction that the 
machine's next state will be a I. 

On the other hand, an observer who cannot observe the tape can 
predict its behaviour only by reference to what was done to the 
switch ten minutes ago. He will insist that the machine has "mem
ory". 

The two observers are not really in conflict, as we can see at 
once when we realise that they are talking of two "machines" that 
are not identical. To the first observer, "the machine" means "cal
culator + tape + switch"; to the second it means "calculator + 
switch". They are talking about different systems. (Again it must 
be emphasised that in complex systems a mere reference to the 
material object is often not sufficient to define adequately the sys
tem under discussion.) (Compare 8.6/14, 12/9.) 

Essentially the same difference can occur in a more biological 
system. Thus, suppose I am in a friend's house and, as a car goes 
past outside, his dog rushes to a corner of the room and cringes. 
To me the behaviour is causeless and inexplicable. Then my 
friend says, "He was run over by a car six months ago." The 
behaviour is now accounted for by reference to an event of six 
months ago. If we say that the dog shows "memory" we refer to 
much the same fact-that his behaviour can be explained, not by 
reference to his state now but to what his state was six months ago. 
If one is not careful one says that the dog "has" memory, and then 
thinks of the dog as having something, as he might have a patch 
of black hair. One may then be tempted to start looking for the 
thing; and one may discover that this "thing" has some very curi
ous properties. 

Clearly, "memory" is not an objective something that a system 
either does or does not possess; it is a concept that the observer 
invokes to fill in the gap caused when part of the system is unob
servable. The fewer the observable variables, the more will the 
observer be forced to regard events of the past as playing a part in 
the system's behaviour. Thus "memory" in the brain is only partly 
objective. No wonder its properties have sometimes been found to 
be unusual or even paradoxical. Clearly the subject requires thor
ough re-examination from first principles. 

117 





PART TWO 

VARIETY 

Now the soldier realised what a capital tinder-box this 
was. If he struck it once, the dog came who sat upon the 
chest of copper money, if he struck it twice, the dog came 
who had the silver; and if he struck it three times, then 
appeared the dog who had the gold. 

("The Tinder-Box") 





QUANTITY OF VARIETY 

Chapter 7 

QUANTITY OF VARIETY 

7/1. In Part I we considered the main properties of the machine 
usually with the assumption that we had before us the actual thing 
about which we would make some definite statement, with refer
ence to what it is doing here and now. To progress in cybernetics 
however, we shall have to extend our range of consideration. The 
fundamental questions in regulation and control can be answered 
only when we are able to consider the broader set of what it might 
do, when "might" is given some exact specification. 

Throughout Part II, therefore, we shall be considering always a 
set of possibilities. The study will lead us into the subjects c infor
mation and communication, and how they are coded in their pas
sages through mechanism. This study is essential for the thorough 
understanding of regulation and control. We shall start from the 
most elementary or basic considerations possible. 

7/2. A second reason for considering a set of possibilities is the 
science is little interested in some fact that is valid only for a sin
gle experiment, conducted on a single day; it seeks always for 
generalisations, statements that shall be true for all of a set of 
experiment; conducted in a variety oflaboratories and on a variety 
of occasions. Galileo's discovery of the law of the pendulum 
would have been a little interest had it been valid only for that 
pendulum on that afternoon. Its great importance is due precisely 
to the fact that it is true over a great range of space and time and 
materials. Science looks for the repetitive (S.7 /15). 

7/3. This fact, that it is the set that science refers to, is often 
obscured by a manner of speech. "The chloride ion ... ", says the 
lecturer, when clearly he means his statement to apply to all chlo
ride ions. So we get references to the petrol engine, the growing 
child the chronic drunkard, and to other objects in the singular, 
when the reference is in fact to the set of all such objects. 

121 



AN INTRODUCTION TO CYBERNETICS 

Sometimes it happens that a statement is equally true of the 
individual and the set: "the elephant eats with its trunk", for 
instance. But the commonness of such a double application 
should not make us overlook the fact that some types of statement 
are applicable only to the set (or only to the individual) and 
become misleading and a source of confusion if applied to the 
other. Thus a gramme of hot hydrogen iodide gas, at some partic
ular moment, may well be 37 per cent ionised; yet this statement 
must not be applied to the individual molecules, which are all 
either wholly ionised or not at all; what is true of the set is false of 
the individuals. Again, the Conservative M.P.s have, at the 
moment, a majority in Parliament; the statement is meaningless if 
applied to an individual member. Again, a tyre on a motor-car 
may well be travelling due west at 50 m.p.h. when considered as 
a whole; yet the portion in contact with the road is motionless, that 
at the top is travelling due west at I 00 m.p.h., and in fact not a sin
gle particle in the tyre is behaving as the whole is behaving. 

Again, twenty million women may well have thirty million 
children, but only by a dangerous distortion of language can we 
say that Mrs. Everyman has one and a half children. The statement 
can sometimes be made without confusion only because those 
who have to take action, those who have to provide schools for the 
children, for instance, know that the half-child is not a freak but a 
set often million children. 

Let us then accept it as basic that a statement about a set may be 
either true or false (or perhaps meaningless) if applied to the ele
ments in the set. 

Ex.: The following statements apply to ''The Cat", either to the species Felis 
domestica or to the cat next door. Consider the applicability of each state
ment to (i) the species, (ii) the individual: 

1. It is a million years old, 
2. It is male, 
3. Today it is in every continent, 
4. It fights its brothers, 
5. About a half of it is female, 
6. It is closely related to the Ursidae. 

7/4. Probability. The exercise just given illustrates the confusion 
and nonsense that can occur when a concept that belongs properly 
to the set (or individual) is improperly applied to the other. An 
outstanding example of this occurs when, of the whole set, some 
fraction of the set has a particular property. Thus, of 100 men in a 
village 82 may be married. The fraction 0.82 is clearly relevant to 
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the set, but has little meaning for any individual, each of whom 
either is or is not married. Examine each man as closely as you 
please, you will find nothing of"0.82" about him; and if he moves 
to another village this figure may change to another without his 
having changed at all. Evidently, the "0.82" is a property of the 
village, not of the individual. 

Nevertheless, it is sometimes found convenient to pretend that 
the fraction has a meaning for the individual, and it may be said 
that any one person has a "probability" 0.82 of being married. 
This form of words is harmless provided it is borne in mind that 
the statement, in spite of its apparent reference to the individual, 
is really a statement about the village. Let this be forgotten and a 
host of "paradoxes" arise, as meaningless and silly as that of 
attempting to teach the "half'-child. Later (in Chapter 9) we shall 
have to use the concept of probability in conjunction with that of 
machine; the origin and real nature of the concept should be borne 
in mind perpetually. 

7/5. Communication. Another subject in which the concept of a 
set plays an essential part is that of "communication", especially 
in the theory developed by Shannon and Wiener. At first, when 
one thinks of, say, a telegram arriving, one notices only the sin
gleness of one telegram. Nevertheless, the act of "communica
tion" necessarily implies the existence of a set of possibilities, i.e. 
more than one, as the following example will show. 

A prisoner is to be visited by his wife, who is not to be allowed 
to send him any message however simple. It is understood that 
they may have agreed, before his capture, on some simple code. 
At her visit, she asks to be allowed to send him a cup of coffee; 
assuming the beverage is not forbidden, how is the warder to 
ensure that no coded message is transmitted by it? He knows that 
she is anxious to let her husband know whether or not a confeder
ate has yet been caught. 

The warder will cogitate with reasonings that will go somewhat 
as follows: "She might have arranged to let him know by whether 
the coffee goes in sweetened or not-T can stop that simply by 
adding lots of sugar and then telling him I have done so. She might 
have arranged to let him know by whether or not she sends a 
spoon-1 can stop that by taking away any spoon and then telling 
him that Regulations forbid a spoon anyway. She might do it by 
sending tea rather than coffee-no, that's stopped because, as 
they know, the canteen will only supply coffee at this time of 
day." So his cogitations go on; what is noteworthy is that at each 
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possibility he intuitively attempts to stop the communication by 
enforcing a reduction of the possibilities to one-always sweet
ened, never a spoon, coffee only, and so on. As soon as the possi
bilities shrink to one, so soon is communication blocked, and the 
beverage robbed of its power of transmitting information. The 
transmission (and storage) of information is thus essentially 
related to the existence of a set of possibilities. The example may 
make this statement plausible; in fact it is also supported by all the 
work in the modern theory of communication, which has shown 
abundantly how essential, and how fruitful, is the concept of the 
set of possibilities. 

Communication thus necessarily demands a set of messages. 
Not only is this so, but the information carried by a particular mes
sage depends on the set it comes from. The information conveyed 
is not an intrinsic property of the individual message. That this is 
so can be seen by considering the following example. Two sol
diers are taken prisoner by two enemy countries A and B, one by 
each; and their two wives later each receive the brief message "I 
am well". It is known, however, that country A allows the pris
oner a choice from 

I am well, 
I am slightly ill, 
I am seriously ill, 

while country B allows only the message 

I am well 

meaning "I am alive". (Also in the set is the possibility of "no 
message".) The two wives will certainly be aware that though 
each has received the same phrase, the informations that they have 
received are by no means identical. 

From these considerations it follows that, in this book, we must 
give up thinking, as we do as individuals, about "this message". 
We must become scientists, detach ourselves, and think about 
"people receiving messages". And this means that we must turn 
our attention from any individual message to the set of all the pos
sibilities. 

VARIETY 

7/6. Throughout this Part we shall be much concerned with the 
question, given a set, of how many distinguishable elements it 
contains. Thus, if the order of occurrence is ignored, the set 

c, b, c, a, c, c, a, b, c, b, b, a 
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which contains twelve elements, contains only three distinct ele
ments -a, b and c. Such a set will be said to have a variety of 
three elements. (A qualification is added in the next section.) 

Though this counting may seem simple, care is needed. Thus 
the two-armed semaphore can place each arm, independently of 
the other, in any of eight positions; so the two arms provide 64 
combinations. At a distance, however, the arms have no individu
ality-"arm A up and arm B down" cannot be distinguished from 
"arm A down and arm B up"-so to the distant observer only 36 
positions can be distinguished, and the variety is 36, not 64. It will 
be noticed that a set's variety is not an intrinsic property of the set: 
the observer and his powers of discrimination may have to be 
specified if the variety is to be well defined. 

Ex. I: With 26 letters to choose from, how many 3-letter combinations are avail
able for motor registration numbers? 

Ex. 2: lf a farmer can distinguish 8 breeds of chicks, but carmot sex them, while 
his wife can sex them but knows nothing of breeds, how many distinct 
classes of chicks can they distinguish when working together? 

Ex. 3: A spy in a house with four windows arranged rectangularly is to signal out 
to sea at night by each window showing, or not showing, a light. How many 
forms can be shown if, in the darkness, the position of the lights relative to 
the house carmot be perceived ? 

Ex. 4: Bacteria of different species differ in their ability to metabolise various 
substances: thus lactose is destroyed by E. cold but not by E. typhi. If a bac
teriologist has available ten substances, each of which may be destroyed or 
not by a given species, what is the maximal number of species that he can 
distinguish ? 

Ex. 5: If each Personality Test can distinguish five grades of its own character
istic, what is the least number of such tests necessary to distinguish the 
2,000,000,000 individuals of the world's population? 

Ex. 6: In a well-known card trick, the conjurer identities a card thus: He shows 
21 cards to a by-stander, who selects, mentally, one of them without reveal
ing his choice. The conjurer then deals the 21 cards face upwards into three 
equal heaps, with the by-stander seeing the faces, and asks him to say which 
heap contains the selected card. He then takes up the cards, again deals them 
into three equal heaps, and again asks which heap contains the selected card, 
and similarly for a third deal. The conjurer then names the selected card. 
What variety is there in (i) the by-stander's indications, (ii) the conjurer's 
final se I ecti on ? 

Ex. 7: (Continued.) 21 cards is not, in fact, the maximal number that could be 
used. What is the maximum, if the other conditions are unaltered? 

Ex. 8: (Continued.) How many times would the by-stander have to indicate 
which of three heaps held the selected card if the conjurer were finally to be 
able to identify the correct card out of the full pack of 52? 

Ex. 9: lfa child's blood group is 0 and its mother's group is 0, how much variety 
is there in the groups of its possible fathers? 
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7/7.lt will have been noticed that many of the exercises involved 
the finding of products and high powers. Such computations are 
often made easier by the use of logarithms. It is assumed that the 
reader is familiar with their basic properties, but one formula will 
be given for reference. If only logarithms to base a are available 
and we want to find the logarithm to the base b of some number 
N, then 

In particular, log2N= 3.322 log1oN. 
The word variety, in relation to a set of distinguishable ele

ments, will be used to mean either (i) the number of distinct ele
ments, or (ii) the logarithm to the base 2 of the number, the 
context indicating the sense used. When variety is measured in the 
logarithmic form its unit is the "bit", a contraction of "Binary 
digiT". Thus the variety of the sexes is 1 bit, and the variety of the 
52 playing cards is 5.7 bits, because log2 52 = 3.322 log1052 = 
3.322 x 1.7160 = 5.7. The chief advantage ofthis way of reckon
ing is that multiplicative combinations now combine by simple 
addition. Thus in Ex. 7/6/2 the farmer can distinguish a variety of 
3 bits, his wife I bit, and the two together 3 + I bits, i.e. 4 bits. 

To say that a set has "no" variety, that the elements are all of 
one type, is, of course, to measure the variety logarithmically; for 
the logarithm of 1 is 0. 

Ex. 1: In Ex. 7/6/4 how much variety, in bits, does each substance distinguish? 
Ex. 2: In Ex. 7/6/s: (i) how much variety in bits does each test distinguish? (ii) 

What is the variety in bits of 2,000,000,000 distinguishable individuals? 
From these two varieties check your previous answer. 

Ex. 3: What is the variety in bits of the 26letters of the alphabet? 
Ex. 4: (Continued.) What is the variety, in bits, of a block of five letters (not 

restricted to forming a word) ? Check the answer by finding the number of 
such blocks, and then the variety. 

Ex. 5: A question can be answered only by Yes or No; (i) what variety is in the 
answer? (ii) In twenty such answers made independently? 

Ex. 6: (Continued.) How many objects can be distinguished by twenty questions, 
each of which can be answered only by Yes or No ? 

Ex. 7: A closed and single-valued transformation is to be considered on six 
states: 

tabcdef 
? ? ? ? ? ? 

in which each question mark has to be replaced by a letter. If the replace
ments are otherwise unrestricted, what variety (logarithmic) is there in the 
set of all possible such transformations ? 
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Ex. 8: (Continued.) If the closed transformation had n states what variety is 
there? 

Ex. 9: lf the English vocabulary has variety of 10 bits per word, what is the stor
age capacity of 10 minutes, speech on a gramophone record, assuming the 
speech is at 120 words per minute? 

Ex. 10: (Continued.) How does this compare with the capacity of a printed page 
of newspaper (approximately)? 

Ex. 11: (Continued.) If a pamphlet takes I 0 minutes to be read aloud, how does 
its variety compare with that of the gramophone record? 

Ex. 12: What set is the previous Ex. referring to? 
Ex. 13: Can a merely negative event-a light not being lit, a neuron not being 

excited, a telegram not arriving-be used as a contribution to variety ? 

CONSTRAINT 

7/8. A most important concept, with which we shall be much con
cerned later, is that of constraint. It is a relation between two sets, 
and occurs when the variety that exists under one condition is less 
than the variety that exists under another. Thus, the variety in the 
human sexes is 1 bit; if a certain school takes only boys, the variety 
in the sexes within the school is zero; so as 0 is less than 1, con
straint exists. 

Another well-known example is given by the British traffic 
lights, which have three lamps and which go through the sequence 
(where"+" means lit and "1" unlit): 

(I) 
Red: + 
Yellow: 0 
Green: 0 

(2) (3) (4) 
+ 0 0 
+ 0 + 
0 + 0 

(I) 
+ 
0 
0 

Four combinations are thus used. It will be noticed that Red is, at 
various times, both lit and unlit; so is Yellow; and so is Green. So 
if the three lights could vary independently, eight combinations 
could appear. In fact, only four are used; so as four is less than 
eight, constraint is present. 

7/9. A constraint may be slight or severe. Suppose, for instance, 
that a squad of soldiers is to be drawn up in a single rank, and that 
"independence" means that they may stand in any order they 
please. Various constraints might be placed on the order of stand
ing, and these constraints may differ in their degree of restriction. 
Thus, if the order were given that no man may stand next a man 
whose birthday falls on the same day, the constraint would be 
slight, for of all the possible arrangements few would be 
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excluded. If, however, the order were given that no man was to 
stand at the left of a man who was taller than himself, the con
straint would be severe; for it would, in fact, allow only one order 
of standing (unless two men were of exactly the same height). The 
intensity of the constraint is thus shown by the reduction it causes 
in the number of possible arrangements. 

7/10. It seems that constraints cannot be classified in any simple 
way, for they include all cases in which a set, for any reason, is 
smaller than it might be. Here 1 can discuss only certain types of 
outstanding commonness and importance, leaving the reader to 
add further types if his special interests should lead him to them. 

7/11. Constrain in vectors. Sometimes the elements of a set are 
vectors, and have components. Thus the traffic signal ofS.7/8 was 
a vector of three components, each of which could take two values. 
In such cases a common and important constraint occurs if the 
actual number of vectors that occurs under defined conditions is 
fewer than the total number of vectors possible without conditions 
(i.e. when each component takes its full range of values independ
ently of the values taken by the other components). Thus, in the 
case of the traffic lights, when Red and Yellow are both lit, only 
Green unlit occurs, the vector with Green lit being absent. 

It should be noticed that a set of vectors provides several varie
ties, which must be identified individually if confusion is not to 
occur. Consider, for instance, the vector of S.3/5: 

(Age of car, Horse-power, Colour). 

The first component will have some definite variety, and so will 
the second component, and the third. The three varieties need not 
be equal. And the variety in the set of vectors will be different 
again. 

The variety in the set of vectors has, however, one invariable 
relation to the varieties of the components-it cannot exceed their 
sum (if we think in logarithms, as is more convenient here). Thus, 
if a car may have any one of 10 ages, of 8 horse-powers, and of 12 
colours, then the variety in the types of car cannot exceed 3.3 + 
3.0 + 3.6 bits, i.e. 9.9 bits. 

7/12. The components are independent when the variety in the 
whole of some given set of vectors equals the sum of the (logarith
mic) varieties in the individual components. If it were found, for 
instance, that all 960 types of car could be observed within some 
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defined set of cars, then the three components would be said to be 
"independent", or to "vary independently", within this defined set. 

It should be noticed that such a statement refers essentially to 
what is observed to occur within the set; it need contain no refer
ence to any supposed cause for the independence (or for the con
straint). 

Ex. I: When Pantagruel and his circle debated whether or not the time had come 
for Panurge to marry, they took advisers, who were introduced thus: " ... 
Rondibilis, is married now, who before was not-Hippothadeus was not 
before, nor is yet-Bridlegoose was married once, but is not now-and 
Trouillogan is married now, who wedded was to another wife before.'' Does 
this set of vectors show constraint ? 

Ex. 2: If each component can be Head (H) or Tail (T), does the set of four vectors 
(H,H,H), (T,T,H), (H,T,T), (T,H,T) show constraint in relation to the set 
showing independence ? 

7/13. Degrees of freedom. When a set of vectors does not show the 
full range of possibilities made available by the components (S. 7 I 
II), the range that remains can sometimes usefully be measured 
by saying how many components with independence would give 
the same variety. This number of components is called the degrees 
of freedom of the set of vectors. Thus the traffic lights (S.7/8) 
show a variety of four. Tfthe components continued to have two 
states apiece, two components with independence could give the 
same variety (of four). So the constraint on the lights can be 
expressed by saying that the three components, not independent, 
give the same variety as two would if independent; i.e. the three 
lights have two degrees of freedom. 

If all combinations are possible, then the number of degrees of 
freedom is equal to the number of components. If only one com
bination is possible, the degrees of freedom are zero. 

It will be appreciated that this way of measuring what is left free 
of constraint is applicable only in certain favourable cases. Thus, 
were the traffic lights to show three, or five combinations, the 
equivalence would no longer be representable by a simple, whole, 
number. The concept is of importance chiefly when the compo
nents vary continuously, so that each has available an infinite 
number of values. A reckoning by degrees of freedom may then 
still be possible, though the states cannot be counted. 
Ex. 1: lf a dealer in second-hand cars boasts that his stock covers a range of 10 

ages, 8 horse powers, and 12 colours, in all combinations, how many degrees 
of freedom has his stock? 

Ex. 2: The angular positions of the two hands on a clock are the two components 
of a vector. Has the set of vectors (in ordinary working round the 12 hours) 
a constraint if the angles are measured precisely? 
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Ex. 3: (Continued.) How many degrees of freedom has the vector? (Hint: Would 
removal of the minute-hand cause an essential loss?) 

Ex. 4: As the two eyes move, pointing the axes in various directions, they define 
a vector with four components: the upward and lateral deviations of the right 
and left eyes. Man has binocular vision; the chameleon moves his two eyes 
independently, each side searching for food on its own side of the body. How 
many degrees of freedom have the chameleonts eyes? Man's? 

Ex. 5: An arrow, of fixed length, lying in a plane, has three degrees of freedom 
for position (for two co-ordinates will fix the position of its centre, say, and 
then one angle will determine its direction). How many degrees of freedom 
has it if we add the restriction that it must always point in the direction of a 
given point P? 

Ex. 6: Tis a given closed and single-valued transformation, and a any of its oper
ands. Consider the set of vectors, each of three components, 

(a, T(a), T2(a)), 
with a given all its possible values in turn. How many degrees of freedom 
has the set? 

Ex. 7: In what way does the ordinary graph, ofy on x, show constraint? 
Ex. 8: How many degrees of freedom has an ordinary body-a chair say-in 

three dimensional space? 

IMPORTANCE OF CONSTRAINT 

7/14. Constraints are of high importance in cybernetics, and will 
be given prominence through the remainder of this book, because 
when a constraint exists advantage can usually be taken of it. 

Shannon's work, discussed chiefly in Chapter 9, displays this 
thesis clearly. Most of it is directed to estimating the variety that 
would exist if full independence occurred, showing that con
straints (there called "redundancy") exist, and showing how their 
existence makes possible a more efficient use of the channel. 

The next few sections will also show something of the wide 
applicability and great importance of the concept. 

7/15. Laws of Nature. First we can notice thatthe existence of any 
invariant over a set of phenomena implies a constraint, for its exist
ence implies that the full range of variety does not occur. The gen
eral theory of invariants is thus a part of the theory of constraints. 

Further, as every law of nature implies the existence of an 
invariant, it follows that every law of nature is a constraint. Thus, 
the Newtonian law says that, of the vectors of planetary positions 
and velocities which might occur, e.g. written on paper (the larger 
set), only a smaller set will actually occur in the heavens; and the 
law specifies what values the elements will have. From our point 
of view, what is important is that the law excludes many positions 
and velocities, predicting that they will never be found to occur. 
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Science looks for laws; it is therefore much concerned with 
looking for constraints. (Here the larger set is composed of what 
might happen if the behaviour were free and chaotic, and the 
smaller set is composed of what does actually happen.) 

This point of view, it will be noticed, conforms to what was said 
in S.l/5. Cybernetics looks at the totality, in all its possible rich
ness, and then asks why the actualities should be restricted to 
some portion of the total possibilities. 

Ex. 1: How is the chemist's Law of Simple Proportions a constraint? 
Ex. 2: How is the Law of Conservation of Energy a constraint? 

7/16. Object as constraint. Constraints are exceedingly common 
in the world around us, and many of our basic concepts make use 
of it in an essential way. Consider as example the basic concept of 
a "thing" or "object", as something handled in daily life. A chair 
is a thing because it has coherence, because we can put it on this 
side of a table or that, because we can carry it around or sit on it. 
The chair is also a collection of parts. 

Now any free object in our three dimensional world has six 
degrees of freedom for movement. Were the parts of the chair 
unconnected each would have its own six degrees of freedom; and 
this is in fact the amount of mobility available to the parts in the 
workshop before they are assembled. Thus the four legs, when 
separate, have 24 degrees of freedom. After they are joined, how
ever, they have only the six degrees of freedom of the single 
object. That there is a constraint is obvious when one realises that 
if the positions of three legs of an assembled chair are known, then 
that of the fourth follows necessarily-it has no freedom. 

Thus the change from four separate and free legs to one chair 
corresponds precisely to the change from the set's having 24 
degrees of freedom to its having only 6. Thus the essence of the 
chair's being a "thing", a unity, rather than a collection of inde
pendent parts corresponds to the presence of the constraint. 

7/17. Seen from this point of view, the world around us is 
extremely rich in constraints. We are so familiar with them that 
we take most of them for granted, and are often not even aware 
that they exist. To see what the world would be like without its 
usual constraints we have to tum to fairy tales or to a "crazy" film, 
and even these remove only a fraction of all the constraints. 

A world without constraints would be totally chaotic. The tur
bulent river below Niagara might be such a world (though the 
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physicist would still find some constraint here). Our terrestrial 
world, to which the living organism is adapted, is far from pre
senting such a chaos. Later (S.l3/5) it will be suggested that the 
organism can adapt just so far as the real world is constrained, and 
no further. 

Ex.: Attempt to count, during the next one minute, all the constraints that are 
operating in your surroundings. 

7/18. Prediction and constraint. That something is "predictable" 
implies that there exists a constraint. If an aircraft, for instance, 
were able to move, second by second, from any one point in the 
sky to any other point, then the best anti-aircraft prediction would 
be helpless and useless. The latter can give useful information only 
because an aircraft cannot so move, but must move subject to sev
eral constraints. There is that due to continuity-an aircraft cannot 
suddenly jump, either in position or speed or direction. There is the 
constraint due to the aircraft's individuality of design, which 
makes this aircraft behave like an A-10 and that one behave like a 
Z-20. There is the constraint due to the pilot's individuality; and so 
on. An aircraft's future position is thus always somewhat con
strained, and it is to just this extent that a predictor can be useful. 

7/19. Machine as constraint. It will now be appreciated that the 
concept of a "machine", as developed from the inspection of a 
protocol (S.6/5), comes from recognising that the sequence in the 
protocol shows a particular form of constraint. Were the protocol 
to show no constraint, the observer would say it was chaotic or 
unpredictable, like a roulette-wheel. 

When it shows the characteristic form of constraint, the 
observer can take advantage of the fact. He does this by re-coding 
the whole protocol into a more compact form, containing only: 

(i) a statement of the transformation 
and (ii) a statement of the actual input given. 

Subsequently, instead of the discussion being conducted in terms 
of a lengthy protocol, it is conducted compactly in terms of a suc
cinct transformation; as we did throughout Part I. 

Thus, use of the transformation is one example of how one can 
turn to advantage the characteristic constraint on behaviour 
imposed by its being "machine-like". 

Ex.: If a protocol shows the constraint characteristic of a machine, what does the 
constraint exclude ? 
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7/20. Within the set of determinate machines further constraints 
may be applied. Thus the set can be restricted to those that have a 
certain set of states as operands, or to those that have only one 
basin, or to those that are not reducible. 

A common and very powerful constraint is that of continuity. It 
is a constraint because whereas the function that changes arbitrar
ily can undergo any change, the continuous function can change, 
at each step, only to a neighbouring value. Exercise 4 gives but a 
feeble impression of the severity of this constraint. 

Ex. 1: The set of closed single-valued transformations (absolute systems) on 
three states a, b, c has 27 members (compare Ex. 717 17). How many members 
remain if we add the restriction that the absolute system is to have no state 
of equilibrium? 

Ex. 2: (Continued.) Similarly, but the restriction is that there must be only one 
basin. 

Ex. 3: (Continued.) Similarly, but the restriction is that the transitions a-> band 
b --7 c may not occur. 

Ex. 4: A vector has ten components, each of which can take one of the values: I, 
2, 3, 4. How much variety has the set of vectors if (i) the components vary 
independently (S.7/12); (ii) under the rule that no two adjacent components 
may differ in value by more than one unit? 

7/21. Learning and constraint. For the psychologist, an important 
example of constraint occurs in learning. Pavlov, for instance, in 
one experiment gave both thermal and tactile stimuli, as well as 
reinforcement by meat powder, in the following combinations: 

Thermal Tactile Reinforcement 
1 + + + 
2 + 
3 + + 
4 

(The fourth combination occurred, of course, in the intervals.) 
Now the total combinations possible are eight; Pavlov presented 
only four. It was an essential part of the experiment that the full 
set should not be given, for otherwise there would be nothing par
ticular for the animal to learn. Constraint was an essential feature 
of the experiment. 

The same principle can be seen more simply in learning by 
association. Suppose one wanted the subject, given a letter, to 
reply with a number according to the rule 

A given reply with 2 
B , , 5 

c " " 3 
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The subject might then be given a sequence such as A2, B5, C3, 
B5, C3, A2, A2, C3, and so on. 

Now this sequence, as a sequence of vectors with two compo
nents, shows constraint; and if learning is to occur the constraint 
is necessary; for without constraint A would be followed equally 
by 2, 3 or 5; and the subject would be unable to form any specific 
associations. Thus learning is possible only to the extent that the 
sequence shows constraint. 

The same is true oflearning a maze. For this to occur the maze 
must retain the same pattern from day to day during the period of 
learning. Were the maze to show no constraint, the animal would 
be unable to develop the particular (and appropriate) way of 
behaving. Thus, learning is worth while only when the environ
ment shows constraint. (The subject is taken up again in S.l3/7.) 

V ARTETY TN MACHINES 

7/22. We can now turn to considering how variety is affected by 
a machine's activities, making our way towards an understanding 
of what happens to information when it is handled by a machine. 
First, let us notice a fundamental peculiarity of the single-valued 
transformation in its relation to variety. 

Consider for instance the single-valued transformation 

1 A B C 
Z:.,v B C C 

and apply it to some set of the operands, e.g. 

BBACCCAABA 
The result is C C B C C C B B C B 

What is important is that the variety in the set has fallen from 3 
to 2. A further transformation by Z leads to all C's, with a variety 
of I. 

The reader can easily satisfY himself that such a set, operated on 
by a single-valued transformation, can never increase in variety, 
and usually falls. The reason for the fall can readily be identified. 

In the graph, a confluence of arrows ) can occur, but a diver-

gence \ is impossible. Whenever the transformation makes two 

states change to one, variety is lost; and there is no contrary proc
ess to replace the loss. 
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It is not necessary that the transformation should be closed. 
Thus if the same set often letters is transformed by Y: 

y I A 
't p 

B C 
q p 

giving q q p p p p p p q p, the variety falls. It is easy to see that 
only when the transformation is one-one (over the letters that 
actually occur in the set to be transformed) is the set's variety 
unchanged; and this is a very special type oftransformation. 

Ex. I: Write the letters A to Z in a row; under it, letter by letter, write the first 26 
letters of some well known phrase. The transition from upper row to lower 
now defines a single-valued transformation (u). Write your name in full, find 
the variety among its letters, transform by u (i.e. "code'' it) and find the vari
ety in the new set of letters How has the variety changed ? Apply u repeat
edly; draw a graph of how the variety changes step by step. 

Ex. 2: In a certain genus of parasite, each species feeds off only one species of 
host.lfthe varieties (in our sense) of parasites' species and hosts' species are 
unequal, which is the larger? 

Ex. 3: ''A multiplicity of genotypes may show the same phenotypic feature." lf 
the change from each genotype to its corresponding phenotype is a transfor
mation V, what change in variety does V cause ? 

Ex. 4: When a tea-taster tastes a cup oftea, he can be regarded as responsible for 
a transformation Y converting "sample of leaf' as operand to "opinion" as 
transform. If the taster is perfect, Y will be one-one. How would he be 
described ifY were many-one? 

Ex. 5: When read to the nearest degree on each of seven occasions, the temper
atures of the room and of a thermostatically-controlled water-bath were 
found to be 

Room: 65, 62, 68, 63, 62, 59, 61. 
Water-bath: 97, 97, 98, 97, 97, 97, 97. 

How much variety is shown (i) by the room's temperatures, (ii) by those of 
the bath? What would have been said had the variety in (i) exceeded that of 
(ii)? 

*Ex. 6: lfthe transformation has been formed by letting each state go to one state 
selected at random from all the states (independently and with equal proba
bilities), show that if the number of states is large, the variety will fall at the 
first step, in the ratio of 1 to 1 - 1/e, i.e. to about two-thirds. (Hint: The prob
lem is equivalent (for a single step) to the following: n hunters come sud
denly on a herd of n deer. Each tires one shot at a deer chosen at random. 
Every bullet hits. How many deer will, on the average, be hit? And to what 
does the average tend as n tends to infinity?) 

7/23. Set and machine. We must now be clear about how a set of 
states can be associated with a machine, for no real machine can, 
at one time, be in more than one state. A set of states can be con
sidered for several reasons. 
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We may, in fact, not really be considering one machine, however 
much we speak in the singular (S.7/3), but may really be consider
ing a set of replicates, as one might speak of"the Model T Ford", or 
"the anterior hom cell", or "the white rat". When this is so we can 
consider all the replicates together, one in one state and one in 
another; thus we get a set of states for one transformation to act on. 

A set of states can also arise even if the machine is unique. For 
we may wish to consider not only what it may do at one time from 
one state but also what it may do at another time from another 
state. So its various possible behaviours at a set of times are natu
rally related to a set of states as operands. 

Finally, a set may be created by the fiat of a theoretician who, 
not knowing which state a particular machine is at, wants to trace 
out the consequences of all the possibilities. The set now is not the 
set of what does exist, but the set of what may exist (so far as the 
theoretician is concerned). This method is typically cybernetic, 
for it considers the actual in relation to the wider set of the possi
ble or the conceivable (S.l/3). 

7/24. Decay of variety. Having, for one of these reasons, a set of 
states and one single-valued transformation, we can now, using 
the result of S. 7/22, predict that as time progresses the variety in 
the set cannot increase and will usually diminish. 

This fact may be seen from several points of view. 
In the first place it gives precision to the often made remark that 

any system, left to itself, runs to some equilibrium. Usually the 
remark is based on a vague appeal to experience, but this is unsat
isfactory, for the conditions are not properly defined. Sometimes 
the second law of thermodynamics is appealed to, but this is often 
irrelevant to the systems discussed here (S.l/2). The new formu
lation shows just what is essential. 

In the second place it shows that if an observer has an absolute 
system, whose transformation he knows but whose states cannot, 
for any reason, be observed, then as time goes on his uncertainty 
about its state can only diminish. For initially it might be at any 
one of all its states, and as time goes on so does the number of its 
possible states diminish. Thus, in the extreme case in which it has 
only one basin and a state of equilibrium, he can, if initially uncer
tain, ultimately say with certainty, without making any further 
observation, at which state it is. 

The diminution can be seen from yet another point of view. If 
the variety in the possible states is associated with information, so 
that the machine's being at some particular state conveys some 
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particular message, then as time goes on the amount of informa
tion it stores can only diminish. Thus one of three messages might 
be carried to a prisoner by a cup of coffee, the message depending 
on whether it was hot, tepid, or cold. This method would work sat
isfactorily if the time between despatch and receipt was short, but 
not if it were long; for whichever of the three states were selected 
originally, the states after a short time would be either "tepid" or 
"cold", and after a long time, "cold" only. Thus the longer the 
time between despatch and receipt, the less is the system's capac
ity for carrying information, so far as this depends on its being at 
a particular state. 

Ex. I: If a ball will rest in any one of three differently coloured basins, how much 
variety can be stored ? 

Ex. 2: (Continued.) If in addition another ball of another colour can be placed, 
by how much is the variety increased ? 

Ex. 3: That a one-one transformation causes no loss of variety is sometimes used 
as a parlour trick. A member of the audience is asked to think of two digits. 
He is then asked to multiply one of them by 5, add 7, double the result, and 
add the other number. The result is told to the conjurer who then names the 
original digits. Show that this transformation retains the original amount of 
variety. (Hint: Subtract 14 from the final quantity.) 

Ex. 4 (Continued.) What is the set for the first measure of variety? 
Ex. 5: (Another trick.) A member of the audience writes down a two-digit 

number, whose digits differ by at least 2. He finds the difference between 
this number and the number formed by the same digits in reverse order. To 
the difference he adds the number formed by reversing the digits of the dif
ference. How much variety survives this transformation? 

Ex. 6: If a circuit of neurons can carry memory by either reverberating or not, 
how much variety can the circuit carry ? What is the set having the variety ? 

Ex. 7: Ten machines, identical in structure, have run past their transients and now 
have variety constant at zero. Are they necessarily at a state of equilibrium? 

7/25. Law of Experience. The previous section showed that the 
variety in a machine (a set being given and understood) can never 
increase and usually decreases. It was assumed there that the 
machine was isolated, so that the changes in state were due only 
to the inner activities of the machine; we will now consider what 
happens to the variety when the system is a machine with input. 

Consider first the simplest case, that of a machine with one 
parameter P that changes only at long intervals. Suppose, for clar
ity, that the machine has many replicates, identical in their trans
formations but differing in which state each is at; and that we are 
observing the set of states provided at each moment by the set of 
machines. Let P be kept at the same value for all and held at that 
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value while the machines change step by step. The conditions are 
now as in the previous section, and if we measure the variety in 
state over the set of replicates, and observe how the variety 
changes with time, we shall see it fall to some minimum. When the 
variety has reached its minimum under this input-value (P~), let P 
be changed to some new value (P2), the change being made uni
formly and simultaneously over the whole set of replicates. The 
change in value will change the machine's graph from one form to 
another, as for example (if the machine has states A, B, ... , F,) 

from 
A 
.t i/ 
D 

to 
c 
i 
F 

Under P1, all those members that started at A, B or D would go to 
D, and those that started at C, E, or F would go to E. The variety, 
after some time at P1, would fall to 2 states. When Pis changed to 
Pb all those systems at D would go, in the first step, toE (for the 
transformation is single-valued), and all those atE would go to B. 
It is easy to see, therefore, that, provided the same change is made 
to all, change of parameter-value to the whole set cannot increase 
the set's variety. This is true, of course, whether D and E are states 
of equilibrium or not. Now let the system continue under P2• The 
two groups, once resting apart at D and E, will now both come to 
B; here all will have the same state, and the variety will fall to 
zero. Thus, change of parameter-value makes possible a fall to a 
new, and lower, minimum. 

The condition that the change P1 -> P2 may lead to a further fall 
in variety is clearly that two or more of P1 's states of equilibrium 
lie in the same P2 basin. Since this will often happen we can make 
the looser, but more vivid, statement that a uniform change at the 
inputs of a set of transducers tends to drive the set's variety down. 

As the variety falls, so does the set change so that all its mem
bers tend, at each moment, to be at the same state. In other words, 
changes at the input of a transducer tend to make the system's 
state (at a given moment) less dependent on the transducer's indi
vidual initial state and more dependent on the particular sequence 
of parameter-values used as input. 

The same fact can be looked at from another point of view. In 
the argument just given, "the set" was taken, for clarity, to be a set 
of replicates of one transducer, all behaving simultaneously. The 
theorem is equally applicable to one transducer on a series of 
occasions, provided the various initial times are brought into 
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proper correspondence. This point of view would be more appro
priate if we were studying some very complex transducer, making 
fresh experiments on it each day. If it contained great numbers of 
rather inaccessible parts, there might be difficulty in bringing it 
each morning back to some standardised state ready for the next 
experiment. The theorem says that if its input is taken, in the early 
morning, through some standardised routine, then the longer the 
routine, the more certain is it that the machine will be brought, 
ready for the experimenter, to some standard state. The experi
menter may not be able to name the state, but he can be confident 
that it tends to be reproducible. 

It should be noticed that mere equality of the set's parameter at 
each step of the sequence is not sufficient; if the effect is to be 
more than merely nominal (i.e. null) the parameters must undergo 
actual, non- zero, change. 

The theorem is in no way dependent for its truth on the size of 
the system. Very large systems are exactly as subjectto it as small, 
and may often be expected to show the effect more smoothly and 
regularly (by the statistical effect of largeness). It may therefore 
be usefully applicable to the brain and to the social and economic 
system. 

Examples that may correspond to this process are very com
mon. Perhaps something of this sort occurs when it is found that 
a number of boys of marked individuality, having all been through 
the same school, develop ways that are more characteristic of the 
school they attended than of their original individualities. The 
extent to which this tendency to uniformity in behaviour is due to 
this property of transducers must be left for further research. 

Some name is necessary by which this phenomenon can be 
referred to. I shall call it the law of Experience. It can be 
described more vividly by the statement that information put in by 
change at a parameter tends to destroy and replace information 
about the system's initial state. 
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Chapter 8 

TRANSMISSION OF VARIETY 

8/1. The previous chapter has introduced the concept of"variety", 
a concept inseparable from that of "information", and we have 
seen how important it is, in some problems, to recognise that we 
are dealing with a set of possibilities. 

In the present chapter we shall study how such possibilities are 
transmitted through a machine, in the sense of studying the rela
tion that exists between the set that occurs at the input and the con
sequent set that occurs, usually in somewhat coded form, at the 
output. We shall see that the transmission is, if the machine is 
determinate, perfectly orderly and capable of rigorous treatment. 
Our aim will be to work towards an understanding good enough 
to serve as a basis for considering the extremely complex codings 
used by the brain. 

8/2. Ubiquity of coding. To get a picture of the amount of coding 
that goes on during the ordinary interaction between organism and 
environment, let us consider, in some detail, the comparatively sim
ple sequence of events that occurs when a "Gale warning" is broad
cast. It starts as some patterned process in the nerve cells of the 
meteorologist, and then becomes a pattern of muscle-movements as 
he writes or types it, thereby making it a pattern of ink marks on 
paper. From here it becomes a pattern of light and dark on the 
announcer's retina, then a pattern of retinal excitation, then a pat
tern of nerve impulses in the optic nerve, and so on through his 
nervous system. It emerges, while he is reading the warning, as a 
pattern of lip and tongue movements, and then travels as a pattern 
of waves in the air. Reaching the microphone it becomes a pattern 
of variations of electrical potential, and then goes through further 
changes as it is amplified, modulated, and broadcast. Now it is a 
pattern of waves in the ether, and next a pattern in the receiving set. 
Back again to the pattern of waves in the air, it then becomes a pat
tern of vibrations traversing the I istener' sear-drums, ossicles, coch
lea, and then becomes a pattern of nerve-impulses moving up the 
auditory nerve. Here we can leave it, merely noticing that this very 
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brief account mentions no less than sixteen major transformations 
through all of which something has been preserved, though the 
superficial appearances have changed almost out of recognition. 

8/3. Complexity of coding. When considering such repeated cod
ings the observer may easily over-estimate the amount of com
plexity that has been introduced. It not uncommonly happens that 
the amount of complexity is nothing like as large as a first impres
sion might suggest. 

A simple example, showing how a complex coding may have 
hidden simplicities, occurs when a simple one-one coding of the al
phabet is applied first to the message, then to the first coded form to 
give a second (doubly-) coded form, then to the second coded form, 
and so on for many codings. The final form might be thought to be 
extremely mixed, and to need for its decoding as many operations 
backwards as were used forwards; in fact, as can easily be verified, 
it differs from the original message only by as much as is caused by 
a single application of some one-one coding. The final message can 
thus be turned back to the original by a single operation. 

Ex.: Arrange the cards of a pack in order, and place it on the table face down
wards. Cut. Cut again. Cut again and again until you are satisfied that the 
original order is lost totally. Now pick the pack up and examine its order; 
how much order has been lost? 

8/4. De-coding. The general study of codings is best introduced 
by noticing some ofthe features of military codings. 

We must be careful from the beginning not to interpret "code" 
too narrowly. At first we tend to think only of those methods that 
tum each letter of the message to some other letter, but this class 
is too restricted, for there are many other methods. Thus the 
"Playfair" code operates on the letters in pairs, turning each pair 
(a vector with two components) to some other pair. Other codes 
put the letters into some new arrangement, while others are 
wholly arbitrary, turning, for instance, "two divisions will arrive" 
to "Arthur". These considerations make it clear that if the coding 
is a transformation, the operand is the whole message rather than 
a letter (though the latter possibility is not excluded). The trans
formation is therefore essentially of the form 

u.tM,M2M3 .. . 
· C1 C2 c3 .. . 

where M1, M2, •.• are the various messages and C1, C2, ••• are 
their coded forms. A coding, then, is specified by a transforma-
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tion. 
Often the method uses a "key-word" or some other factor that 

is capable of changing the code from one form to another. Such a 
factor corresponds, of course, to a parameter, giving as many par
ticular codings (or transformations) UI, Ub ... as there are values 
to the factor. 

"Decoding" means applying such a transformation to the trans
form Ci as will restore the original message M; : 

v t c, c2 c3 .. . 
. M1M2M3 .. . 

Such a transformation Vis said to be the inverse ofU; it may then 
be written as U-1• In general, only one-one transformations have 
single-valued inverses. 

If the original message Mi is to be recoverable from the coded 
form Ci, whatever value i may have, then both U and U-1 must be 
one-one; for if both Mi and Mi were to be transformed to one form 
Ck, then the receiver of Ck could not tell which of the M's had 
been sent originally, and Ck cannot be decoded with certainty. 

Next suppose that a set of messages, having variety v, is sent 
coded by a one-one transformation U. The variety in the set of 
coded forms will also be v. Variety is not altered after coding by 
a one-one transformation. 

It follows that if messages of variety v are to pass through sev
eral codes in succession, and are to be uniquely restorable to their 
original forms, then the process must be one that preserves the 
variety in the set at every stage. 

Ex. I: Is the transformation x' = log 10 x, applied to positive numbers, a one-one 
coding? What is ''decoding" it usually called? 

Ex. 2: ls the transformation x' =sin x, applied to the positive numbers, a one-one 
coding? 

Ex. 3: What transformation results from the application ot: first, a one-one trans-
formation and then its inverse ? 

Ex. 4: What transformation is the inverse of n' = n + 7? 
Ex. 5: What transformation is the inverse ofx' = 2x + y, y' = x + y? 
Ex. 6: lfthe coded form consists of three English letters, e.g. JNB, what is the 

variety of the possible coded forms (measured logarithmically)? 
Ex. 7: (Continued.) How many distinct messages can be sent through such a 

code, used once? 
Ex. 8. Eight horses are running in a race, and a telegram will tell Mr. A. which 

came first and which second. What variety is there in the set of possible mes
sages? 

Ex. 9: (Continued.) Could the set be coded into a single letter, printed either as 
capital or 
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Ex. 10: The concentrations "high" or"low" of sex-hormone in the blood of a cer
tain animal determines whether it will, or will not, go through a ritual of 
courtship. lfthe sex-hormone is very complicated chemically and the ritual 
very complicated ethnologically, and if the variable "behaviour" is regarded 
as a coded form of the variable "concentration", how much variety is there 
in the set of messages ? 

8/5. Coding by machine. Next we can consider what happens when 
a message becomes coded by being passed through a machine. 

That such questions are of importance in the study of the brain 
needs no elaboration. Among their other applications are those 
pertaining to "instrumentation"-the science of getting informa
tion from some more or less inaccessible variable or place, such 
as the interior of a furnace or of a working heart, to the observer. 
The transmission of such information almost always involves 
some intermediate stage of coding, and this must be selected suit
ably. Until recently, each such instrument was designed simply on 
the principles peculiar to the particular branch of science; today, 
however, it is known, after the pioneer work of Shannon and 
Wiener, that certain general laws hold over all such instruments. 
What they are will be described below. 

A "machine" was defined in S.3/4 as any set of states whose 
changes in time corresponded to a closed single-valued transfor
mation. This definition applies to the machine that is totally iso
lated i.e. in constant conditions; it is identical with the absolute 
system defined in Design. ... In S.4/ I the machine with input was 
defined as a system that has a closed single-valued transformation 
for each one of the possible states of a set of parameters. This is 
identical with the "transducer" of Shannon, which is defined as a 
system whose next state is determined by its present state and the 
present values of its parameters. (He also assumes that it can have 
a finite internal memory, but we shall ignore this for the moment, 
returning to it in S.918.) 

Assume then that we have before us a transducer M that can be 
in some one of the states S1, S2, ... , S11, which will be assumed 
here to be finite in number. It has one or more parameters that can 
take, at each moment, some one of a set of values P1, P2, ••• , Pk. 
Each ofthese values will define a transformation of the S's. We 
now find that such a system can accept a message, can code it, and 
can emit the coded form. By "message" 1 shall mean simply some 
succession of states that is, by the coupling between two systems, 
at once the output of one system and the input of the other. Often 
the state will be a vector. I shall omit consideration of any "mean-
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ing" to be attached to the message and shall consider simply what 
will happen in these determinate systems. 

For simplicity in the example, suppose that M can take any one 
of four states: A, B, C, and D; that the parameters provide three 
states Q, R, and S. These suppositions can be shown in tabular 
form, which shows the essentials of the "transducer" (as in S.4/l): 

A B C D 

Q C C A B 

R A C B B 

S B D C D 

Given its initial state and the sequence of values given to the 
parameter, its output can be found without difficulty, as in S.4/l. 
Thus, suppose it starts at Band that the input is at R; it will change 
to C. If the input goes next to Q, it will go from C to A. The results 
so far can be shown in tabular form: 

Input-state: R Q 
Transducer-state: B C A 

It can now easily be verified that if the initial state is B and the 
input follows the sequence R Q R S S Q R R Q S R, the output 
will follow the sequence B C A A B DB C B C C B. 

There is thus no difficulty, given the transducer, its initial state, 
and the input sequence, in deducing its trajectory. Though the 
example may seem unnatural with its arbitrary jumps, it is in fact 
quite representative, and requires only more states, and perhaps 
the passage to the limit of continuity to become a completely nat
ural representation. In the form given, however, various quantita
tive properties are made obvious and easily calculable, where in 
the continuous form the difficult technique of measure theory 
must be used. 

Ex. 1: Pass the same message (R Q R S S Q R R Q S R) through the same trans
ducer, this time starting at A. 

Ex. 2: Pass the message "R1, R2, R3, R1, Rz, R3" through the transducer ofS.4/l, 
starting it at a. 

Ex. 3: (Continued.) Encode the same message through the same transducer, start
ing it at b. 

Ex. 4: (Continued.) Does a transducer's output depend, for given input, on its ini
tial state? 

Ex. 5: If the transducer is n' = n- a, where a is a parameter, what will its trajec
tory be if it starts at n = 10 and receives the input sequence 2, I,-3, -I, 2, I? 
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Ex. 6: Pass the message "314159 ... "(the digits of rc) through the transducer n' 
= n + a-5, starting the transducer at n = 10. 

Ex. 7: lf a and bare parameters, so that the vector (a, b) defines a parameter state, 
and if the transducer has states defined by the vector (x,y) and transformation 

J x' =ax+ by 
l y' = x+(a-b)y, 

complete the trajectory in the table: 

a 1 -2 0 -1 2 5 -2 
b -1 1 1 0 1 -2 0 
X 2 I 2 ? ? ? ? 
y I 4 -II ? ? ? ? 

*Ex. 8: A transducer, with parameter u, has the transformation dx/dt =- (u + 4 )x; 
it is given, from initial state x = 1, the input u =cost; find the values ofx as 
output. 

*Ex. 9: If a is input to the transducer 
dxldt = y 
dyldt=-x-2y+a, 

with diagram of immediate effects 

a~y~x, 

what is the output from x if it is started at (0,0) with input a = sin t? (Hint: 
Use the Laplace transform.) 

*Ex. I 0: If a is input and the transducer is 

dxldt = k(a-x) 

what characterises x's behaviour ask is made positive and numerically larger 
and larger? 

INVERTING A CODED MESSAGE 

8/6. In S.8/4 it was emphasised that, for a code to be useful as a 
message-carrier, the possibility of its inversion must exist. Let us 
attempt to apply this test to the transducer of S.8/5, regarding it as 
a coder. 

There are two transformations used, and they must be kept care
fully distinct. The first is that which corresponds to U of S.8/4, 
and whose operands are the individual messages; the second is 
that of the transducer. Suppose the transducer of S.8/5 is to be 
given a "message" that consists of two letters, each of which may 
be one of Q, R, S. Nine messages are possible: 

QQ, QR, QS, RQ, RR, RS, SQ, SR, SS 
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and these correspond to M1, M2, ••. , M9 of U. Suppose the trans
ducer is always started at A; it is easy to verify that the corre
sponding nine outputs will be (if we ignore the initial and 
invariable A): 

CA, CB, CC, AC, AA, AB, BC, BC, BB. 

These are the C1, C2, ... , C9 ofU. Now the coding performed by 
the transducer is not one-one, and there has been some loss of 
variety, for there are now only eight distinguishable elements, BC 
being duplicated. This transducer therefore fails to provide the 
possibility for complete and exact decoding; for if BC arrives, 
there is no way of telling whether the original message was SQ or 
SR. 

In this connexion it must be appreciated that an inability to 
decode may be due to one of two very different reasons. It may be 
due simply to the fact that the decoder, which exists, is not at hand. 
This occurs when a military message finds a signaller without the 
code-book, or when a listener has a gramophone record (as a 
coded form of the voice) but no gramophone to play it on. Quite 
different is the inability when it is due to the fact that two distinct 
messages may result in the same output, as when the output BC 
comes from the transducer above. All that it indicates is that the 
original message might have been SQ or SR, and the decoder that 
might distinguish between them does not exist. 

It is easy to see that if, in each column of the table, every state 
had been different then every transition would have indicated a 
unique value of the parameter; so we would thus have been able 
to decode any sequence of states emitted by the transducer. The 
converse is also true; for if we can decode any sequence of states, 
each transition must determine a unique value of the parameter, 
and thus the states in a column must be all different. We have thus 
identified the characteristic in the transducer that corresponds to 
its being a perfect coder. 

Ex. 1: ln a certain transducer, which has 100 states, the parameters can take 108 
combinations of values; can its output always be decoded? (Hint: Try simple 
examples in which the number of transformations exceeds that of the states.) 

Ex. 2: (To emphasise the distinction between the two transformations.) lfa trans
ducer's input has 5 states, its output 7, and the message consists of some 
sequence of 12, (i) how many operands has the transducer's transformation, 
and (ii) how many has the coding transformation U? 

Ex. 3: lf a machine is continuous, what does "observing a transition" correspond 
to in terms of actual instrumentation ? 

*Ex. 4: If the transducer has the transformation dx/dt =ax, where a is the input, 
can its output always be decoded? (Hint: Solve for a.) 
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8/7. Designing an inverter. The previous section showed that pro
vided the transducer did not lose distinctions in transmission from 
input to output, the coded message given as output could always 
be decoded. In this section we shall show that the same process 
can be done automatically, i.e. given a machine that does not lose 
distinctions, it is always possible to build another machine that, 
receiving the first's output as input, will emit the original message 
as its own output. 

We are now adopting a rather different point of view from that 
of the previous section. There we were interested in the possibility 
of a message being decoded and in whether the decoding could be 
done or not-by whom did not matter. We are now turning to the 
question of how a mechanism can be built, by us, so that the 
mechanism shall do the decoding automatically. We seek, not a 
restored message but a machine. How shall it be built? What we 
require for its specification, of course, is the usual set of transfor
mations (S.4/1 ). 

A possible method, the one to be used here, is simply to convert 
the process we followed in the preceding section into mechanistic 
form, using the fact that each transition gives information about 
the parameter-value under which it occurred. We want a 
machine, therefore, that will accept a transition as input and give 
the original parameter value as output. Now to know which tran
sition has occurred, i.e. what are the values of i and j in "X; ->Xi", 
is clearly equivalent to knowing what is the value of the vector 
(i,j); for a transition can also be thought of as a vector having two 
components. We can therefore feed the transitions into an inverter 
if the inverter has an input of two parameters, one to take the value 
of the earlier state and the other to take the value of the later. 

Only one difficulty remains: the transition involves two states 
that do not exist at the same moment of time, so one of the 
inverter's inputs must behave now according to what the trans
ducer's output was. A simple device, however, will get over this 
difficulty. Consider the transducer 

q r s 

Q q q q 
R 

s 
r 

s 

r r 

s s 

Suppose it is started at stater and is given the input Q S S R Q S R 
R Q; its output will be r q s s r q s r r q, i.e. after the first letter it 
just repeats the input, but one step later. Two such transducers in 
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series will repeat the message two steps later, and so on. Clearly 
there is no difficulty in principle in getting delay. 

Suppose that the first transducer, the coder, is: 

1 A B C D 

Q D A D B 
R B B B C 
S A C A D 

What we require is a machine that, e.g. 

given input A, A will emit S 
, A, B , R 
, , A, D , , Q 
, , B, A , , Q 

etc. 

(The input A,C will never actually come to it, for the transition 
cannot be emitted from the coder.) 

The three machines are coupled thus: 

~ICoderl~~ 

I Inverter!~ 

The delayer has the simple form: 

a b c d 

A a a a a 
B b b b b 
c c c c c 
D d d d d 

and the inverter the form: 

Q R s 
(a, A) S S S 
(a, B) R R R 
(a, C) (will not occur) 
(a, D) Q Q Q 
(b,A) Q Q Q 
etc. etc. 

to which the input is the vector 
(state of delayer, state of coder). 
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The inverter will now emit the same sequence as was put into 
the coder. Thus suppose Q was put in and caused the transition 
A ~ D in the coder. This implies that the inverter will be receiv
ing at this step, D directly from the coder (for the coder is at D), 
and a from the delayer (for the coder was at A the step before). 
With input (a, D), the inverter goes to state Q, which is the state 
we supposed. And similarly for the other possible states put in. 

Thus, given a transducer that does not lose distinctions, an 
automatic inverter can always be built. The importance of the 
demonstration is that it makes no reference to the transducer's 
actual material-it does not matter whether it is mechanical, or 
electronic, or neuronic, or hydraulic-the possibility of inversion 
exists. What is necessary is the determinateness of the coder's 
actions, and its maintenance of all distinctions. 

Ex. 1: Why cannot the Coder ofS.S/5 be used as example? 
Ex. 2: Complete the specification of the inverter just given. 
Ex. 3: Specify a two-step delayer in tabular form. 

8/8. (This section may be omitted at first reading.) Now that the 
construction of the inverter has been identified in the most general 
form, we can examine its construction when the transducer is less 
general and more like the machines of every-day life. The next 
step is to examine the construction of the inverter when the trans
formations, of transducer and inverter, are given, not in the 
abstract form of a table but by some mathematical function. 

As a preliminary, consider building an inverter for the trans
ducer with input a, variable n, and transformation n' = n +a. A 
suitable device for delay would be the transducer with parameter 
n, variable p, and transformation p' = n. It is now easily verified 
that, given the input a as shown, n (if started at 3) and p (if started 
at 1) will change as: 

a: 
n: 
p: 

4 -2 -1 0 
3 7 5 4 
l 3 7 5 

2 -1 -1 
4 6 5 
4 4 6 

3 
4 
5 

It is now obvious that if the inverter, with a variable m, is to 
receive nand pas input, as vector (n,p), and give back a as output, 
then M, as transformation, must include such transitions as: 

M ~ (7, 3) (5, 7) (4, 5) (4, 4) 
. 4 -2 -1 0 
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Examination of these in detail, to find how the transform follows 
from the operand, shows that in all cases 

m'=n-p 

It is easily verified that the whole system will now emit the values 
that the original input had two steps earlier. 

(The reader might be tempted to say that as n' = n + a, therefore 
a = n'- n, and the code is solved. This statement is true, but it 
does not meet our purpose, which is to build a machine (see pare. 
2 of S.S/7). It enables us to decode the message but it is not the 
specification of a machine. The building or specification requires 
the complications of the previous paragraph, which finishes with 
m' = n - p, a specification for a machine with input.) 

The general rule is now clear. We start with the transducer's 
equation, n' = n +a, and solve it for the parameter: a= n' - n. The 
delaying device has the transformation p' = n. The transformation 
for the inverter is formed by the rules, applied to the equation 
a=n' -n: 

1: replace a by the new transducer's symbol m'; 
2: replace n' by a parameter c; 
3: replace n by a parameter d. 

Then, if this inverter is joined to the original transducer by putting 
d = n, and to the delayer by c = p, it will have the required prop
erties. 

If the original transducer has more than one variable, the proc
ess needs only suitable expansion. An example, without explana
tion, will be sufficient. Suppose the original transducer has 
parameters a1 and ab variables x 1 and x2, and transformation 

x 1' = 2x1 + a1x2 
x2' = 2x2 + a1a2 

Solving for the parameters gives 

a1 = (x1'- 2x1)/x2 
a2 = xix2' - 2x2)/(x1' - 2x1) 

A delayer for x1 is p 1' = x 1, and one for x2 is p2' = x2• The equations 
of the inverter are formed from those for a1 and a2 by applying the 
rules: 

1: replace each a, by a new symbol a1= m1', a2 = m2'; 

2: replace eachx; 'by a parameter c;: x1' = c1, x2' = c2; 
3: replace each x, by a parameter d;: x1 = d1, x2 = d2; 
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There results the transducer 

m1' = (c1 - 2d1)/d2 
m2' = dic2 - 2d2)/(c1 - 2d1) 

If now this transducer is joined to the original transducer by d1 = 

x 1, d2 = xb and to the delayers by c1= p 1, c 2 = p 2, then m 1 and m 2 
will give, respectively, the values that a 1 and a2 had two steps ear
lier. 

Ex. 1: Build an inverter for the transducer n' =an. 
Ex. 2: Similarly for n' = n- 2a + 4. 
Ex. 3: Similarly for x' =ax- by, y' =ax+ by. 
Ex. 4: Try to build an inverter for the transducer n' = n +a+ b, why can it not 

be done? 
*Ex. 5: Build an inverter for the transducer 

d.x/dt =a1x 1x2 + a2 
d.xzldt =(a 1_1)x 1 +a2x2• 

Ex. 6: Why, in the section, does M have to transform (7,3) to 4, and not to -2, 
as the table a few lines higher might suggest ? 

8/9. Size of the inverter. With the facts of the previous section, it 
is now possible to make some estimate of how much mechanism 
is necessary to invert the output of some given transducer. S.8/7 
makes clear that if the original transducer is not to lose distinc
tions it must have at least as many output values as the input has 
distinct values. Similarly the inverter must have at least as many, 
but need not necessarily have more. The delayers will require lit
tle, for they are simple. It seems, therefore, that if the inverter is 
made of similar components to the original transducer then, what
ever the complexity or size of the original transducer, the inverter 
will have a complexity and size of the same order. 

The importance of this observation is that one sometimes feels, 
when thinking of the complexities in the cerebral cortex or in an 
ecological system, that any effect transmitted through the system 
must almost at once become so tangled as to be beyond all possi
ble unravelling. Evidently this is not so; the complications of cod
ing added by one transducer are often or usually within the 
decoding powers of another transducer of similar size. 

TRANSMISSION FROM SYSTEM TO SYSTEM 

8/10. "Transmitting" variety. It may be as well at this point to 
clarifY a matter on which there has been some confusion. Though 
it is tempting to think of variety (or information) as passing 

151 



AN INTRUUUCTIUN TO CYBERNETICS 

through a transducer, or variety passing from one transducer to 
another, yet the phrase is dangerously misleading. Though an 
envelope can contain a message, the single message, being 
unique, cannot show variety; so an envelope, though it can con
tain a message, cannot contain variety: only a set of envelopes can 
do that. Similarly, variety cannot exist in a transducer (at any 
given moment), for a particular transducer at a particular moment 
is in one, and only one, state. A transducer therefore cannot "con
tain" variety. What can happen is that a number of transducers 
(possibly of identical construction), at some given moment, can 
show variety in the states occupied; and similarly one transducer, 
on a number of occasions, can show variety in the states it occu
pied on the various occasions. 

(What is said here repeats something of what was said in S.7/5, 
but the matter can hardly be over-emphasised.) 

It must be remembered always that the concepts of"variety", as 
used in this book, and that of"information", as used in communi
cation theory, imply reference to some set, not to an individual. 
Any attempt to treat variety or information as a thing that can exist 
in another thing is likely to lead to difficult "problems" that 
should never have arisen. 

8/11. Transmission at. one step. Having considered how variety 
changes in a single transducer, we can now consider how it passes 
from one system to another, from T to U say, where Tis an abso
lute system and U is a transducer. 

~--7~ 
As has just been said, we assume that many replicates exist, iden
tical in construction (i.e. in transformation) but able to be in vari
ous states independently of each other. If, at a given moment, the 
T' s have a certain variety, we want to find how soon that variety 
spreads to the U's. Suppose that, at the given moment, the T's are 
occupying nT distinct states and the U's are occupying nut (The 
following argument will be followed more easily if the reader will 
compose a simple and manageable example forT and U on which 
the argument can be traced.) 

T is acting as parameter to U, and to each state of Twill corre
spond a graph of U. The set of U' s wi II therefore have as many 
graphs as the T's have values, i.e. nT graphs. This means that from 
each U-state there may occur up to nT different transitions (pro
vided by the nT different graphs), i.e. from the U-state a represent
ative point may pass to any one of not more than nT U-states. A 
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set ofU's that has aiJ its representative points at the same state can 
thus, under the effect ofT's variety, change to a set with its points 
scattered over not more than nT states. There are nu such sets of 
U's, each capable of being scattered over not more than nT states, 
so the total scattering cannot, after one step, be greater than over 
nTnu states. Ifvariety is measured logarithmically, then the vari
ety in U after one step cannot exceed the sum of those initially in 
U and T. In other words, the U's cannot gain in variety at one step 
by more than the variety present in the T's. 

This is the fundamental law of the transmission of variety from 
system to system. It will be used frequently in the rest of the book. 

Ex. 1: A system has states (t,u) and transformation t' = 2', u' = u + t, sot dominates 
u. Eight such systems are started at the states (0,9), (2,5), (0,5), (1,9), (1,5), 
(2,5), (0,9), (1,9) respectively. How much variety is in the t's? How much 
in the u's? 

Ex. 2: (Continued.) Find the states at the next step. How much variety hast now? 
Predict an upper limit to u's variety. How much has u now? 

Ex. 3: In another system, T has two variables, t 1 and t2, and U has two, u1 and 
u2. The whole has states ( t 1, tb u1, u2), and transformation t1' = t1t2, t2' = t1, 

u1' = u1 + t2u2, u2' = t1ub so that T dominates U. Three replicas are started 
from the initial states (0,0,0, I), (0,0, I, I) and (I ,0,0, I). What is T's variety? 
What is U's? 

Ex. 4: (Continued.) Find the three states one step later. What is U's variety now? 

8/12. Transmission at second step. We have just seen that, at the 
first step, U may gain in variety by an amount up to that in T; what 
will happen at the second step? T may still have some variety: will 
this too pass to U, increasing its variety still further ? 

Take a simple example. Suppose that every member of the 
whole set of replicates was at one of the six states (Ti,Uk), (Ti, U1), 

(Ti, Um), (Ti,Uk), (Ti,UD, (lj,Um), so that the T's were all at either 
T' or T and the U's were all at U1, U1 or Um. Now the system as a 
whole is absolute; so all those at, say (Ti, Uk), while they may 
change from state to state, will all change similarly, visiting the 
various states together. The same argument holds for those at each 
of the other five states. It follows that the set's variety in state can
not exceed six, however many replicates there may be in the set, 
or however many states there may be in T and U, or for however 
long the changes may continue. From this it follows that the U's 
can never show more variety than six U-states. Thus, once U has 
increased in variety by the amount in T, all further increase must 
cease. IfU receives the whole amount in one step (as above) then 
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U receives no further increase at the second step, even though T 
still has some variety. 

It will be noticed how important in the argument are the pair
ings between the states ofT and the states of U, i.e. which value 
ofT and which ofU occur in the same machine. Evidently merely 
knowing the quantities of variety in T and in U (over the set of 
replicates) is not sufficient for the prediction of how they will 
change. 

8/13. Transmission through a charmer. We can now consider how 
variety, or information, is transmitted through a small intermedi
ate transducer-a "channel"-where "small" refers to its number 
of possible states. Suppose that two large transducers Q and S are 
connected by a small transducer R, so that Q dominates R, and R 
dominates S. 

@]~ [!]~0 
As usual, let there be a great number of replicates of the whole tri
ple system. Let R 's number of possible states be r. Put log2r equal 
top. Assume that, at the initial state, the Q's have a variety much 
larger than r states, and that the R's and S's, for simplicity,have 
none. (Had they some variety, S.8/11 shows that the new variety, 
gained from Q, would merely add, logarithmically, to what they 
possess already.) 

Application of S. 8/11 toR and S shows that, at the first step, 
S's variety will not increase at all. So if the three initial varieties, 
measured logarithmically, were respectively N, 0 and 0, then 
after the first step they may be as large as N, p, and 0, but cannot 
be larger. 

At the next step, R cannot gain further in variety (by S.8/12), but 
Scan gain in variety from R (as is easily verified by considering 
an actual example such as Ex. 2). So after the second step the vari
eties may be as large as N, p and p. Similarly, after the third step 
they may be as large as N, p and 2p; and so on. S's variety can thus 
increase with time as fast as the terms of the series, 0, p, 2p, 3p, 
... , but not faster. The rule is now obvious: a transducer that can
not take more than r states cannot transmit Variety at more than 
log2r bits per step. This is what is meant, essentially, by different 
transducers having different "capacities" for transmission. 

Conversely, asS's variety mounts step by step we can see that 
the amount of variety that a transducer (such as R) can transmit 
is proportional to the product of its capacity, in bits, and the 
number of steps taken. From this comes the important corollary, 
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which will be used repeatedly later: given long enough, any trans
ducer can transmit any amount of variety. 

An important aspect of this theorem is its extreme generality. 
What sort of a machine it is that is acting as intermediate trans
ducer, as channel, is quite irrelevant: it may be a tapping-key that 
has only the two states "open" and "closed", or an electric poten
tial that can take many values, or a whole neural ganglion, or a 
newspaper-all are ruled by the theorem. With its aid, quantita
tive accuracy can be given to the intuitive feeling that some 
restriction in the rate of communication is implied if the commu
nication has to take place through a small intermediate transducer, 
such as when the information from retina to visual cortex has to 
pass through the lateral geniculate body, or when information 
about the movements of a predator have to be passed to the herd 
through a solitary scout. 

Ex. 1: An absolute system, of three parts, Q, RandS, has states (q,r,s) and trans
formation 

q: ~ 1 2 3 4 5 6 7 8 9 
q~ 4 6 6 5 6 5 8 8 8 

r' = j 0, if q + r is even, 
1, ~~ , , odd. 

s' = 2s-r. 

Q thus dominates R, and R dominates S. What is R 's capacity as a channel? 
Ex. 2: (Continued.) Nine replicates were started at the initial states (1,0,0), 

(2,0,0), ... , (9,0,0), so that only Q had any initial variety. (i) How did the 
variety of the Q's change over the first five steps? (ii) How did that of the 
R 's? (iii) That of the S's? 

Ex. 3: (Continued.) Had the answer to Ex. 2(iii) been given as "S:1,1,4,5,5", why 
would it have been obviously wrong, without calculation of the actual trajec
tories? 

8/14. The exercise just given will have shown that when Q, Rand 
S form a chain, S can gain in variety step by step from R even 
though R can gain no more variety after the first step (S.S/12). The 
reason is that the output of R, taken step by step as a sequence, 
forms a vector (S.9/9), and the variety in a vector can exceed that 
in a component. And if the number of components in a vector can 
be increased without limit then the variety in the vector can also 
be increased without limit, even though that in each component 
remains bounded. Thus a sequence of ten coin-spins can have 
variety up to 1024 values, though each component is restricted to 
two. Similarly R's values, though restricted in the exercises to 
two, can provide a sequence that has variety of more than two. As 
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the process of transmission goes on, Sis affected (and its variety 
increased) by the whole sequence, by the whole vector, and thus a 
variety of much more than two can pass through R. A shrinkage 
in the capacity of a channel can thus be compensated for (to keep 
the total variety transmitted constant) by an increase in the length 
of the sequence- a fact already noticed in the previous section, 
and one that will be used frequently later. 

Ex. 1: An absolute system T dominates a chain of transducers A1, A2, A3, A4, ... : 

[?] --7 ~ --712!3.]--7 ~ --7I::Q --7 ". 
A set of replicates commences with variety in T but with none in A1, nor in 
A2, etc. Show that after k steps the varieties in A1, A2, ... , Ak may be 
non-zero but that those in Ak+ 1, Ak+Z• ... must still be zero (i.e. that T' s vari
ety "cannot have spread farther than Ak".). 

Ex. 2: Of27 coins, identical in appearance, one is known to be counterfeit and to 
be light in weight. A balance is available and the counterfeit coin is to be 
identified by a series ofbalancings, as few as possible. Without finding the 
method-by regarding the balance as a transducer carrying information from 
the coins to the observer-give a number below which the number ofbal
ancings cannot fall. (Hint: What is the variety at a single balancing if the 
results can be only: equality, left pan heavier, right pan heavier?) 

8/15. Delay. The arrangement of the system ofS.8/13: 

can also be viewed as 

in which Q and R have been regarded as forming a single system 
T which is, of course, absolute. If now an observer studies the 
transfer of variety from T to S, with exactly the same events as 
those of S.8/13 actually occurring, he will find that the variety is 
moving across in small quantities, step by step, unlike the transfer 
ofS.8/11, which was complete in one step. 

The reason for the distinction is simply that in S.8/11 the whole 
of the dominating system (T) had an immediate effect on the dom
inated (U), while in S.8/13 T contained a part Q which had no 
immediate effect on the receiver S. Q's effect had to be exerted 
through R, and was thereby delayed. 

This more time-consuming transfer is common in real systems 
simply because many of them are built of parts not all of which 
have an immediate effect on the receiving system. Thus if the cer
ebral cortex, as receiver, is affected by the environment (which 
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has no immediate effect on the cortex) the action has to take place 
through a chain of systems: the sense organs, the sensory nerves, 
the sensory nuclei, and so on; and some delay is thereby imposed. 
Even within one such part some transfer has to take place from 
point to point thereby delaying its transfer to the next part. 

Conversely, if a system such as Tis found on testing to transmit 
its variety to another system only over a number of steps, then it 
may be predicted that T, if examined in detail, will be found to 
consist of sub- systems coupled so that not all ofT's variables 
have an immediate effect on S. 

Ex. 1: IfT consists of the sub-systems A, ... , F joined to each other and to S as 
shown in the diagram of immediate effects: 

how many steps are necessary for all the variety in T to be transferred to S? 
Ex. 2: (Continued.) How long does it take to get a "message", telling ofT's state, 

uniquely from T to S? 
Ex. 3: If J, with the variables w, x, y, z, dominates K, with the variable k, by the 

transformation w' = w-y, x' = w + xz, y' = 2wy-z, z, = yz2, k'= x-3k, how 
many steps are necessary for all the variety in J to be transferred to K? 

Ex. 4: (Continued.) In the same system, how long would it take to get a message 
from wto z? 

8/16. To improve our grasp of these matters, let us next consider 
the case of two systems joined so that there is feedback: 

[!]~~ 
S.S/11 showed that Twill pass variety to U; will U, now having 
this variety, pass it back toT and thereby increase T's variety still 
further? 

Again the answer is given straightforwardly when we consider 
a set of replicates. Suppose that initially the variety existed only 
between the T's, the U's being all at the same state. Divide the 
whole set into sub- sets, each sub-set consisting of those with Tat 
a particular state, so that set i, say, consists of the systems with T 
at state Ti. Within such a subset there is now no variety in state, 
and no variety can develop, for the whole (T,U)-system is abso
lute. The initial variety of the T's, therefore, will not increase, 
either at the first step or subsequently. In a determinate system, 
feedback does not lead to a regenerative increase in variety. 
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What was important in the argument about U' s feedback to T is 
that what U feeds back toT is highly correlated with what is in T, 
for each U feeds back into the particular T that acted on it a step 
earlier, and no other. The argument thus demands an accurate 
treatment of the correspondences between the various T's and U's. 

The arguments of the previous few sections have shown that 
though the matter can be treated in words in the simple cases 
(those just considered), the attempt to handle complex cases in the 
verbal form is likely to lead to intolerable complexities. What is 
wanted is a symbolic machinery, an algebra, which will enable the 
relations to be handled more or less mechanically, with the rules 
of the symbolic manipulation looking after the complexities. It 
seems likely that the theory of sets, especially as developed by 
Bourbaki and Riguet, will provide the technique. But further 
research is needed into these questions. 

8/17. Interference. If acid and alkali are passed along the same 
pipe they destroy each other; what will happen if two messages 
are passed along the same channel?-will they interfere with, and 
destroy, each other? 

Simple examples are quite sufficient to establish that the same 
physical channel may well carry more than one message without 
interference, each message travelling as if the others did not exist. 
Suppose, for instance, that a sender wanted to let a recipient know 
daily, by an advertisement in the personal column of a newspaper, 
which of26 different events was being referred to, and suppose he 
arranged to print a single letter as the coded form. The same chan
nel of "one printed letter" could simultaneously be used to carry 
other messages, of variety two, by letting the letter be printed as 
lower case or capital. The two messages would then be transmit
ted with as little interference as if they were on separate pages. 
Thus, if ten successive messages were sent, N K e S z t y Z w m 
would transmit both n k e s z t y z w m and I I 0 I 0 0 0 I 0 0 
completely. It is thus possible for two messages to pass through 
the same physical thing without mutual destruction. 

As an example of rather different type, consider the transforma
tion of Ex. 2/14/li, and regard the position of, say, A'" as a coded 
form of that of A (with B"' similarly as the coded form of B). Thus 
treasure might be buried at A and weapons at B, with recording 
marks left at A"' and B"'. Now a change in the position of B leads 
to a change of A"', soB's value plays an essential part in the cod
ing of A to A"' (and conversely of A on B"'); so the two messages 
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interact. Nevertheless the interaction is not destructive to the 
information about where the treasure and the weapons are, for 
given the positions of A"' and B"', those of A and B can always be 
reconstructed, i.e. the messages are still capable of being exactly 
decoded. 

The conditions necessary that two messages should not inter
fere destructively can be found by considering the basic fact of 
coding-that a set of messages are converted to a set of trans
forms (S.S/4)-and by using the fact that any two messages of dif
ferent type can be laid side by side and considered as components 
of one ''vector" message, just as any two variables can always be 
regarded as components of one vector. Thus if, in the example of 
the printed letter, x represents the variable "which message of the 
26" and y represents the variable "which of the two", then the 
printed symbol is a coding of the single message (x,y). 

Suppose it is given that the two messages x andy do not interfere 
destructively. This implies that both x's andy's values are recon
structible from the received form. It follows that if two primary 
messages are distinct, then their coded forms must be distinct (for 
otherwise unique decoding would not be possible). From this it fol
lows that, if the interaction is to be non-destructive, the variety in 
the received forms must be not less than that in the original. This 
condition holds in the example of the printed letter, for both the 
original messages and the printed form have variety of 26 x 2. 

The fact that chaos does not necessarily occur when two mes
sages meet in the same channel is of great importance in 
neuro-physiology, especially in that of the cerebral cortex. Here 
the richness of connexion is so great that much mixing of mes
sages must inevitably occur, if only from the lack of any method 
for keeping them apart. Thus a stream of impulses coming from 
the auditory cortex and carrying information relevant to one reac
tion may meet a stream of impulses coming from the visual cortex 
carrying information relevant to some other reaction. It has been 
an outstanding problem in neurophysiology to know how destruc
tive interaction and chaos is avoided. 

The discussion of this section has shown, however, that the 
problem is badly stated. Chaos does not necessarily occur when 
two messages meet, even though each affects the same physical 
set of variables. Through all the changes, provided that no variety 
is lost and that the mechanism is determinate in its details, the two 
messages can continue to exist, passing merely from one coding 
to another. All that is necessary for their recovery is a suitable 
inverter; and, as S.S/7 showed, its construction is always possible. 
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Ex. 1: (See Ex. 2/14111.) lf A"' is at the point (0,0) and B'" at (0,1), reconstruct 
the position of A. 

Ex. 2: A transducer has two parameters: a (which can take the values a or A) and 
~ (which can take the values b or B). lts states-W, X, Y, Z-are trans
formed according to: 

W X Y Z 
(a,b) W Y Y Y 
(a,B) X X W W 
(A,b) Z W X X 
(A,B) Y Z Z Z 

Two messages, one a series of a-values and the other a series of~- values, 
are transmitted simultaneously, commencing together. lf the recipient is 
interested only in the a-message, can he always re-construct it, regardless 
of what is sent by~? (Hint: S.8/6.) 

Ex. 3: Join rods by hinge-pins, as shown in Fig. 8/1711: 

M L 

c 

Fig 8/1711 

(The pinned and hinged joints have been separated to show the construc
tion.) P is a pivot, fixed to a base, on which the rod R can rotate; similarly 
for Q and S. The rod M passes over P without connexion; similarly for N and 
Q. A tubular constraint Censures that all movements, for small arcs, shall be 
to right or left (as represented in the Figure) only. 

Movements at A and B will cause movements at L and N and so to Y and 
Z and the whole can be regarded as a device for sending the messages ''posi
tion of A" and "position of B ", via L and N, to the outputs Y and Z. It will 
be found that, with B held fixed, movements at A cause movements of both 
L and N; similarly, with A held fixed, movements at B also affect both L and 
N. Simultaneous messages from A and B thus pass through both L and N 
simultaneously, and evidently meet there. Do the messages interact destruc
tively? (Hint: How does Y move if A alone moves?) 

Ex. 4: (Continued.) Find the algebraic relation between the positions at A, B, Y 
and Z. What does "decoding" mean in this algebraic form? 
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INCESSANT TRANSMISSION 

9/1. The present chapter will continue the theme of the previous, 
and will study variety and its transmission, but will be concerned 
rather with the special case of the transmission that is sustained 
for an indefinitely long time. This is the case of the sciatic nerve, 
or the telephone cable, that goes on incessantly carrying mes
sages, unlike the transmissions of the previous chapter, which 
were studied for only a few steps in time. 

Incessant transmission has been specially studied by Shannon, 
and this chapter will, in fact, be devoted chiefly to introducing his 
Mathematical Theory of Communication, with special emphasis 
on how it is related to the other topics in this Introduction. 

What is given in this chapter is, however, a series of notes, 
intended to supplement Shannon's masterly work, rather than a 
description that is complete in itself. Shannon's book must be 
regarded as the primary source, and should be consulted first. I 
assume that the reader has it available. 

9/2. The non-determinate transformation. If the transmission is to 
go on for an indefinitely long time, the variety must be sustained, 
and therefore not like the case studied in S.S/11, in which T's 
transmission of variety stopped after the first step. Now any deter
minate system of finite size cannot have a trajectory that is infi
nitely long (S.4/5). We must therefore now consider a more 
comprehensive form of machine and transformation-the non
determinate. 

So far all our transformations have been single-valued, and 
have thus represented the machine that is determinate. An exten
sion was hinted at in S.2/1 0, and we can now explore the possibil
ity of an operand having more than one transform. Some 
supplementary restriction, however, is required, so as to keep the 
possibilities within bounds and subject to some law. It must not 
become completely chaotic. A case that has been found to have 
many applications is that in which each operand state, instead of 
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being transformed to a particular new state, may go to some one 
of the possible states, the selection of the particular state being 
made by some method or process that gives each state a constant 
probability ofbeing the transform. It is the unchangingness of the 
probability that provides the law or orderliness on which definite 
statements can be based. 

Such a transformation would be the following: x' = x +a, where 
the value of a is found by spinning a coin and using the rule Head: 
a= 1; Tail: a= 0. Thus, if the initial value ofx is 4, and the coin 
gives the sequence T T H H H T H T T H, the trajectory will be 4, 
4, 4, 5, 6,7, 7, 8, 8, 8,9.lfthe coingivesHT H HTTT HTT, the 
trajectory will be 4, 5, 5, 6, 7, 7, 7, 7, 8, 8, 8. Thus the transforma
tion and the initial state are not sufficient to define a unique tra
jectory, as was the case in S.2/17; they define only a set of 
trajectories. The definition given here is supplemented by instruc
tions from the coin (compare S.4/19), so that a single trajectory is 
arrived at. 

The transformation could be represented (uniformly with the 
previously used representations) as: 

3 
112A 112 

3 4 

4 
112A 112 

4 5 

5 
1/2 A 1/2 etc. 

5 6 

where the 112 means that from state 3 the system will change 

with probability 1/2 to state 3, 

and 
" " " 

4. 

Such a transformation, and especially the set of trajectories that it 
may produce, is called "stochastic", to distinguish it from the sin
gle-valued and determinate. 

Such a representation soon becomes unmanageable if many 
transitions are possible from each state. A more convenient, and 
fundamentally suitable, method is that by matrix, similar to that 
of S.2/1 0. A matrix is constructed by writing the possible oper
ands in a row across the top, and the possible transforms in a col
umn down the left side; then, at the intersection of column i with 
row j, is put the probability that the system, if at state i, will go to 
statej. 

As example, consider the transformation just described. If the 
system was at state 4, and if the coin has a probability 1/2 of giv-
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ing Head, then the probability of its going to state 5 is 1/2 and so 
would be its probability of staying at 4. 

3 4 5 6 

3 1/2 0 0 0 
4 112 1/2 0 0 
5 0 1/2 1/2 0 
6 0 0 1/2 1/2 

All other transitions have zero probability. So the matrix can be 
constructed, cell by cell. 

This is the matrix of transition probabilities. (The reader 
should be warned that the transposed form, with rows and col
umns interchanged, is more common in the literature; but the form 
given has substantial advantages, e.g. Ex. 12/8/4, besides being 
uniform with the notations used throughout this book.) 

We should, at this point, be perfectly clear as to what we mean 
by "probability". (See also S.7/4.) Not only must we be clear 
about the meaning, but the meaning must itself be stated in the 
form of a practical, operational test. (Subjective feelings of 
"degree of confidence" are here unusable.) Thus if two observers 
differ about whether something has a "constant probability", by 
what test can they resolve this difference ? 

Probabilities are frequencies. "A 'probable' event is a frequent 
event." (Fisher.) Rain is "probable" at Manchester because it is 
frequent at Manchester, and ten Reds in succession at a roulette 
wheel is "improbable" because it is infrequent. (The wise reader 
will hold tight to this definition, refusing to be drawn into such 
merely speculative questions as to what numerical value shall be 
given to the "probability" of life on Mars, for which there can be 
no frequency.) What was said in S.7/4 is relevant here, for the 
concept of probability is, in its practical aspects, meaningful only 
over some set in which the various events or possibilities occur 
with their characteristic frequencies. 

The test for a constant probability thus becomes a test for a con
stant frequency. The tester allows the process to continue for a 
time until some frequency for the event has declared itself. Thus, 
if he wished to see whether Manchester had a constant, i.e. 
unvarying, probability of rain (in suitably defined conditions), he 
would record the rains until he had formed a first estimate of the 
frequency. He would then start again, collect new records, and 
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form a second estimate. He might go on to collect third and fourth 
estimates. If these several estimates proved seriously discrepant 
he would say that rain at Manchester had no constant probability. 
If however they agreed, he could, if he pleased, say that the frac
tion at which they agreed was the constant probability. Thus an 
event, in a very long sequence, has a "constant" probability of 
occurring at each step if every long portion of the sequence shows 
it occurring with about the same relative frequency. 

These words can be stated more accurately in mathematical 
terms. What is important here is that throughout this book any 
phrases about "probability" have objective meanings whose 
validity can be checked by experiment. They do not depend on 
any subjective estimate. 

Ex. 1: Take the five playing cards Ace, 2, 3, 4, 5. Shuffle them, and lay them in 
a row to replace the asterisks in the transformation T: 

T: 1 A;e ~ ~ ! ~ 

Is the particular transformation so obtained determinate or not? (Hint: Is it 
single-valued or not?) 

Ex. 2: What rule must hold over the numbers that appear in each column of a 
matrix of transition probabilities? 

Ex. 3: Does any rule like that of Ex. 2 hold over the numbers in each row? 
Ex. 4: If the transformation defined in this section starts at 4 and goes on for 10 

steps, how many trajectories occur in the set so defined? 
Ex. 5: How does the kinematic graph of the stochastic transformation differ from 

that of the determinate ? 

9/3. The stochastic transformation is simply an extension of the 
determinate (or single valued). Thus, suppose the matrix oftran-
sition probabilities of a three-state system were: 

A B c A B c 

first A 0 0.9 0.1 and then A 0 0 

B 0.9 0 0 B 1 0 0 

c 0.1 0.1 0.9 c 0 0 

The change, from the first matrix to the second, though small (and 
could be made as small as we please) has taken the system from 
the obviously stochastic type to that with the single-valued trans
formation: 

B 
A 
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of the type we have considered throughout the book till now. The 
single-valued, determinate, transformation is thus simply a spe
cial, extreme, case of the stochastic. It is the stochastic in which 
all the probabilities have become 0 or 1. This essential unity 
should not be obscured by the fact that it is convenient to talk 
sometimes ofthe determinate type and sometimes of the types in 
which the important aspect is the fractionality of the probabilities. 
Throughout Part III the essential unity of the two types will play 
an important part in giving unity to the various types of regulation. 

The word "stochastic" can be used in two senses. It can be used 
to mean "all types (with constant matrix of transition probabili
ties), the determinate included as a special case", or it can mean 
"all types other than the determinate". Both meanings can be 
used; but as they are incompatible, care must be taken that the 
context shows which is implied. 

THE MARKOV CHAIN 

9/4. After eight chapters, we now know something about how a sys
tem changes if its transitions correspond to those of a singlevalued 
transformation. What about the behaviour of a system whose tran
sitions correspond to those of a stochastic transformation? What 
would such a system look like if we met one actually working? 

Suppose an insect lives in and about a shallow pool-some
times in the water (W), sometimes under pebbles (P), and some
times on the bank (B). Suppose that, over each unit interval of 
time, there is a constant probability that, being under a pebble, it 
will go up on the bank; and similarly for the other possible transi
tions. (We can assume, if we please, that its actual behaviour at 
any instant is determined by minor details and events in its envi
ronment.) Thus a protocol of its positions might read: 

WBWBWPWBWBWBWPWBBWBWPWBWPW 
BWBWBBWBWBWBWPPWPWBWBBBW 

Suppose, for definiteness, that the transition probabilities are 

B W P 

B 114 3/4 1/8 
w 3/4 0 3/4 
p 0 1/4 1/8 

These probabilities would be found (S.9/2) by observing its 
behaviour over long stretches of time, by finding the frequency of, 
say, B ~ W, and then finding the relative frequencies, which are 
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the probabilities. Such a table would be, in essence, a summary of 
actual past behaviour, extracted from the protocol. 

Such a sequence of states, in which, over various long stretches, 
the probability of each transition is the same, is known as a 
Markov chain, from the name of the mathematician who first 
made an extensive study of their properties. (Only during the last 
decade or so has their great importance been recognised. The 
mathematical books give various types of Markov chain and add 
various qualifications. The type defined above will give us all we 
want and will not clash with the other definitions, but an impor
tant qualification is mentioned in S.9/7.) 

The term "Markov chain" is sometimes applied to a particular 
trajectory produced by a system (e.g. the trajectory given in Ex. 1) 
and sometimes to the system (defined by its matrix) which is 
capable of producing many trajectories. Reference to the context 
must show which is implied. 

Ex. 1: A system of two states gave the protocol (of 50 transitions): 
ABABBBABAABABABABBBBABAABABBAAB 
ABBABAAABABBAABBABBA 
Draw up an estimate of its matrix of transition probabilities. 

Ex. 2: Use the method of S.9/2 (with the coin) to construct several trajectories, 
so as to establish that one matrix can give rise to many different trajectories. 

Ex. 3: Use a table of random numbers to generate a Markov chain on two states 
A and B by the rule: 

Present state 
A 

B 

If 

Random number' 
0 or 1 

2, 3 ... 9 
0, I, 2, 3, 4 
5, 6, 7, 8, 9 

Then 
next state 

A 
B 
A 
B 

Ex. 4: (Continued.) What is its matrix of transition probabilities? 

9/5. Ex. 9/4/1 shows how the behaviour of a system specifies its 
matrix. Conversely, the matrix will yield information about the 
tendencies of the system, though not the particular details. Thus 
suppose a scientist, not the original observer, saw the insect's 
matrix of transition probabilities: 

B W P 

B 1/4 3/4 1/8 
w 3/4 0 3/4 
p 0 1/4 1/8 
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He can deduce that if it is in water it will not stay there, for W ----t W 
has probability zero, but will go usually to the bank, for W ----t B 
has the highest probability in the column. From the bank it will 
probably go to the water, and then back to the bank. If under a 
pebble it also tends to go to the water. So clearly it spends much 
of its time oscillating between bank and water. Time spent under 
the pebbles will be small. The protocol given, which was con
structed with a table of random numbers, shows these properties. 

Thus the matrix contains information about any particular sys
tem's probable behaviour. 

Ex. 1 Had the P-column of the matrix a I in the lowest cell and zero elsewhere, 
what could be deduced about the insect's mode oflife? 

Ex. 2: A fly wanders round a room between positions A, B, C, and D, with tran
sition probabilities: 

A B 

B 1/4 I 0 113 
c 114 0 112 113 
D 0 0 1/2 0 

One of the positions is an unpleasantly hot stove and another is a fly-paper. 
Which are they ? 

Ex. 3: If the protocol and matrix of Ex. 9/4/1 are regarded as codings of each 
other, which is the direction of coding that loses information? 

9/6. Equilibrium in a Markov chain. Suppose now that large num
bers of such insects live in the same pond, and that each behaves 
independently of the others. As we draw back from the pond the 
individual insects will gradually disappear from view, and all we 
will see are three grey clouds, three populations, one on the bank, 
one in the water, and one under the pebbles. These three popula
tions now become three quantities that can change with time. If 
they are dB, dw, and dp respectively at some moment, then their 
values at one interval later, dH' etc., can be found by considering 
what their constituent individuals will do. Thus, of the insects in 
the water, three-quarters will change over to B, and will add their 
number on to dB, while a quarter will add their number to dp. 
Thus, after the change the new population on the bank, dB', will be 
1/4 dB+ 3/4 dw+ 1/8 dp. In general therefore the three populations 
will change in accordance with the transformation (on the vector 
with three components) 

dB' = 1/4 dB + 3/4 dw + 1/8 dp 
d,,/ = 3/4 dH + 3/4dp 
dp' = 1/4 dw + 1/8dp 

It must be noticed, as fundamentally important, that the system 
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composed of three populations (if large enough to be free from 
sampling irregularities) is determinate, although the individual 
insects behave only with certain probabilities, 

To follow the process in detail let us suppose that we start an 
experiment by forcing 100 of them under the pebbles and then 
watching what happens. The initial vector of the three populations 
(d11 , dw, d1J will thus be (0, 0, 100). What the numbers will be at 
the next step will be subject to the vagaries of random sampling; 
for it is not impossible that each of the hundred might stay under 
the pebbles. On the average, however (i.e. the average if the whole 
I 00 were tested over and over again) only about 12.5 would 
remain there, the remainder going to the bank ( 12.5 also) and to 
the water (75). Thus, after the first step the population will have 
shown the change (0, 0, 100) ~ (12.5, 75, 12.5). 

In this way the average numbers in the three populations may 
be found, step by step, using the process of S.3/6. The next state 
is thus found to be (60.9, 18.8, 20.3), and the trajectory of this sys
tem (of three degrees of freedom-not a hundred ) is shown in 
Fig. 9/6/1. 

00 

Fig. 9/6/1 

It will be seen that the populations tend, through dying oscilla
tions, to a state of equilibrium, at ( 44. 9, 42.9, 12.2), at which the 
system will remain indefinitely. Here "the system" means, of 
course, these three variables. 

It is worth noticing that when the system has settled down, and 
is practically at its terminal populations, there will be a sharp con
trast between the populations, which are unchanging, and the 
insects, which are moving incessantly. The same pond can thus 
provide two very different meanings to the one word "system". 
("Equilibrium" here corresponds to what the physicist calls a 
"steady state".) 
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The equilibria] values of a Markov chain are readily computed. 
At equilibrium the values are unchanging, so d8 ', say, is equal to 
dB. So the first line of the equation becomes 

dB = 1/4 dB+ 3/4 dw+ 1/8 dp 
i.e. 0 =-3/4d8 + 3/4dw+ 1/8dp 
The other lines are treated similarly. The lines are not all inde
pendent, however, for the three populations must, in this example, 
sum to 100; one line (any one) is therefore struck out and replaced 
by 

dB + dw + dp = 100 
The equations then become, e.g., 

- 3/4 d8 + 3/4 dw+ 
dB+ dw+ 

1/4 dw-

1/8 dp= 0 
dp= 100 

7/8 dp= 0 

which can be solved in the usual way. In this example the equi
libria] values are (44 9, 42 9, 12 2); as S.9/S predicted, any indi
vidual insect does not spend much time under the pebbles. 

Ex. 1: Find the populations that would follow the initial state of putting all the 
insects on the banlc 

Ex. 2: Verify the equilibria! values. 
Ex. 3: A six-sided die was heavily biased by a weight hidden in face x. When 

placed in a box with facefupwards and given a thorough shaking, the prob
ability that it would change to face g was found, over prolonged testing, to 
be: 

f 

2 0.1 0.1 0.1 0.1 0.1 0.1 
3 0.5 0.5 0.5 0.5 0.5 0.5 

g 4 0.1 0.1 0.1 0.1 0.1 0.1 
5 0.1 0.1 0.1 0.1 0.1 0.1 
6 0.1 0.1 0.1 0.1 0.1 0.1 

Which isx? (Hint: Beware!) 
Ex. 4: A compound AB is dissolved in water. In each small interval of time each 

molecule has a 1% chance of dissociating, and each dissociated A has an 
0.1% chance of becoming combined again. What is the matrix of transition 
probabilities of a molecule, the two states being "dissociated" and "not dis
sociated"? (Hint: Can the number of B 's dissociated be ignored ?) 

Ex. 5: (Continued.) What is the equilibria! value of the percentage dissociated? 
Ex. 6: Write out the transformations of (i) the individual insect's transitions and 

(ii) the population's transitions. How are they related? 
Ex. 7: How many states appear in the insect's transitions? How many in the sys

tem of populations? 
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*Ex. 8: If Dis the column vector of the populations in the various states, D' the 
vector one step later, and M the matrix of transition probabilities, show that, 
in ordinary matrix algebra, 

D'~MD, D"~M2D, and D(n) ~ M"D. 

(This simple and natural relation is lost if the matrix is written in transposed 
form. Compare Ex. 2/16/3 and 12/8/4.) 

917. Dependence on earlier values. The definition of a Markov 
chain, given in S.9/4, omitted an important qualification: the 
probabilities of transition must not depend on states earlier than 
the operand. Thus if the insect behaves as a Markov chain it will 
be found that when on the bank it will go to the water in 75% of 
the cases, whether before being on the bank it was at bank, water, 
or pebbles. One would test the fact experimentally by collecting 
the three corresponding percentages and then seeing if they were 
all equal at 75%. 

Here is a protocol in which the independence does not hold: 
AABBABBAABBABBABBABBAABBABBABABA 
The transitions, on a direct count, are 

A B 

A 3 10 

B 10 8 

In particular we notice that B is followed by A and B about 
equally. If we now re-classify these 18 transitions from B accord
ing to what letter preceded the B we get: 

AB fi 11 d b { A: 2 times 
.. . was o owe y B: 8 

{ A: 8 
... BB " " B: 0 

So what state follows B depends markedly on what state came 
before the B. Thus this sequence is not a Markov chain. Some
times the fact can be described in metaphor by saying that the sys
tem's "memory" extends back for more than one state (compare 
S.6/21). 

This dependence of the probability on what came earlier is a 
marked characteristic of the sequences of letters given by a lan
guage such as English. Thus: what is the probability that an s will 
be followed by at? It depends much on what preceded the s; thus 
es followed by tis common, but ds followed by tis rare. Were the 
letters a Markov chain, then s would be followed by t with the 
same frequency in the two cases. 
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These dependencies are characteristic in language, which con
tains many of them. They range from the simple linkages ofthe 
type just mentioned to the long range linkages that make the end
ing " ... of Kantian transcendentalism" more probable in a book 
that starts "The university of the eighteenth century ... " than in 
one that starts "The modem racehorse ... ". 

Ex.: How are the four transitions C ---7 C, C ---7 D, D ---7 C, and D ---7 D affected 
in frequency of occurrence by the state that immediately preceded each oper
and, in the protocol: 

DDCCDCCDDCCDCCDDCCDCCDDCCDDDDDDDDC 
CD D DCC DCC DC? 

(Hint: ClassifY the observed transitions.) 

9/8. Re-coding to Markov form. When a system is found to pro
duce trajectories in which the transition probabilities depend in a 
constant way on what states preceded each operand, the system, 
though not Markovian, can be made so by a method that is more 
important than may at first seem-one re-defines the system. 

Thus suppose that the system is like that of Ex. 9/7/1 (the pre
ceding), and suppose that the transitions are such that after the 
two-state sequence ... CC it always goes to D, regardless of what 
occurred earlier, that after . . . DC it always goes to C, that after 
... CD it goes equally frequently in the long run to C and D, and 
similarly after ... DD. We now simply define new states that are 
vectors, having two components-the earlier state as first compo
nent and the later one as second. Thus if the original system has 
just produced a trajectory ending ... DC, we say that the new sys
tem is at the state (D, C). If the original then moves on to state C, 
so that its trajectory is now ... DCC, we say that the new system 
has gone on to the state (C, C). So the new system has undergone 
the transition (D, C) ~ (C, C). These new states do form a 
Markov chain, for their probabilities (as assumed here) do not 
depend on earlier state in fact the matrix is 

t (C,C) (C,D) (D,C) (D,D) 

(C,C) 0 
(C,D) 1 
(D,C) 0 
(D,D) 0 

0 
0 

1/2 
112 

I 
0 
0 
0 

0 
0 

1/2 
112 

(Notice that the transition (C,D) ~ (C,D) is impossible; for any 
state that ends (-,D) can only go to one that starts (D,-). Some 
other transitions are similarly impossible in the new system.) 
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If, in another system, the transition probabilities depend on val
ues occurring n steps back, then the new states must be defined as 
vectors over n consecutive states. 

The method of re-defining may seem artificial and pointless. 
Actually it is of fundamental importance, for it moves our attention 
from a system that is not state-determined to one that is. The new 
system is better predictable, for its "state" takes account of the orig
inal system's past history. Thus, with the original form, to know 
that the system was at state C did not allow one to say more than 
that it might go to either Cor D. With the second form, to know that 
it was at the state (D, C) enabled one to predict its behaviour with 
certainty, just as with the original form one could predict with cer
tainty when one knew what had happened earlier. What is impor
tant is that the method shows that the two methods of "knowing" a 
system-by its present state or by its past history- have an exact 
relation. The theory of the system that is not completely observable 
(S.6/21) made use of this fact in essentially the same way. We are 
thus led again to the conclusion that the existence of"memory" in 
a real system is not an intrinsic property of the system-we hypoth
esise its existence when our powers of observation are limited. 
Thus, to say "that system seems to me to have memory" is equiva
lent to saying "my powers of observation do not permit me to make 
a valid prediction on the basis of one observation, but I can make a 
valid prediction after a sequence of observations". 

919. Sequence as vector. In the earlier chapters we have often used 
vectors, and so far they have always had a finite and definite 
number of components. It is possible, however, for a vector to 
have an infinite, or indefinitely large number of components. Pro
vided one is cautious, the complication need cause little danger. 

Thus a sequence can be regarded as a vector whose first com
ponent is the first value in the sequence, and so on to the n-th com
ponent, which is the n-th value. Thus if I spin a coin five times, 
the result, taken as a whole, might be the vector with five compo
nents (H, T, T, H, T). Such vectors are common in the theory of 
probability, where they may be generated by repeated sampling. 

If such a vector is formed by sampling with replacement, it has 
only the slight peculiarity that each value comes from the same 
component set, whereas a more general type, that of S.3/5 for 
instance, can have a different set for each component. 

9/10. Constraint in a set of sequences. A set of such sequences can 
show constraint, just as a set of vectors can (S.7/11 ), by not having 
the full range that the range of components, if they were independ-
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ent, would make possible. Tfthe sequence is of finite length, e.g. 
five spins of a coin, as in the previous paragraph, the constraint 
can be identified and treated exactly as in S.7111. When, however, 
it is indefinitely long, as is often the case with sequences (whose 
termination is often arbitrary and irrelevant) we must use some 
other method, without, however, changing what is essential. 

What the method is can be found by considering how an infi
nitely long vector can be specified. Clearly such a vector cannot 
be wholly arbitrary, in components and values, as was the vector 
in S.3/5, for an infinity of time and paper would be necessary for 
its writing down. Usually such indefinitely long vectors are spec
ified by some process. First the value of the initial component is 
given and then a specified process (a transformation) is applied to 
generate the further components in succession (like the "integra
tion" of S.3/9). 

We can now deduce what is necessary if a set of such vectors is 
to show no constraint. Suppose we build up the set of "no con
straint", and proceed component by component. By S.7/12, the first 
component must take its full range of values; then each of these val
ues must be combined with each of the second component's possi
ble values; and each of these pairs must be combined with each of 
the third component's possible values; and so on. The rule is that as 
each new component is added, all its possible values must occur. 

It will now be seen that the set of vectors with no constraint cor
responds to the Markov chain that, at each transition, has all the 
transitions equally probable. (When the probability becomes an 
actual frequency, lots of chains will occur, thus providing the set 
of sequences.) Thus, ifthere are three states possible to each com
ponent, the sequences of no constraint will be the set generated by 
the matrix 

A B C 

A 1/3 1/3 1/3 
B 1/3 1/3 1/3 
c 1/3 1/3 1/3 

Ex. I: The exponential series defines an infinitely long vector with components: 

(l,x, ~' /3' 2 .~4 4' ... ) 

What transformation generates the series by obtaining each component from 
that on its left? (Hint: Call the components t 1, t2, ... , etc.; t;' is the same as 
tl+l.) 

Ex. 2: Does the series produced by a true die show constraint? 
Ex. 3: (Continued.) Does the series of Ex. 9/4/3? 
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ENTROPY 

9/11. We have seen throughout S.7/5 and Chapter 8 how informa
tion cannot be transmitted in larger quantity than the quantity of 
variety allows. We have seen how constraint can lessen some 
potential quantity of variety. And we have just seen, in the previ
ous section, how a source of variety such as a Markov chain has 
zero constraint when all its transitions are equally probable. It fol
lows that this condition (of zero constraint) is the one that enables 
the information source, if it behaves as a Markov chain, to trans
mit the maximal quantity of information (in given time). 

Shannon has devised a measure for the quantity of variety shown 
by a Markov chain at each step--the entropy-that has proved of 
fundamental importance in many questions relating to incessant 
transmission. This measure is developed in the following way. 

If a set has variety, and we take a sample of one item from the 
set, by some defined sampling process, then the various possible 
results of the drawing will be associated with various, correspond
ing probabilities. Thus if the traffic lights have variety four, show
ing the combinations 

1 Red 
2 Red and Yell ow 
3 Green 
4 Yellow, 

and if they are on for durations of25, 5, 25 and 5 seconds respec
tively, then if a motorist turns up suddenly at irregular times he 
would find the lights in the various states with frequencies of 
about 42, 8, 42 and 8% respectively. As probabilities these 
become 0.42, 0.08, 0.42 and 0.08. Thus the state "Green" has (if 
this particular method of sampling be used) a probability of 0 42; 
and similarly for the others. 

Conversely, any set of probabilities-any set of positive frac
tions that adds up to l-ean be regarded as corresponding to some 
set whose members show variety. Shannon's calculation proceeds 
from the probabilities by the calculation, if the probabilities are 
PI,Pb ... ,pn, of 

- P1 logpl-P2 1ogp2- ··· Pn logpn' 

a quantity which he calls the entropy of the set of probabilities 
and which he denotes by H. Thus if we take logs to the base 10, 
the entropy of the set associated with the traffic lights is 
- 0.42log100.42- 0.08log100.08- 0.42log100.42- 0.08log100.08 
which equals 0.492. (Notice that log10 0.42 = 1.6232 = -1.0000 + 

174 



INCESSANT TRANSMISSION 

0.6232 =- 0.3768; so the first term is (- 0.42)(- 0.3768), which 
is+ 0.158; and similarly for the other terms.) Had the logs been 
taken to the base 2 (S.7/7) the result would have been 1.63 bits. 

The word "entropy" will be used in this book solely as it is used 
by Shannon, any broader concept being referred to as "variety" or 
in some other way. 

Ex. I: On 80 occasions when 1 arrived at a certain level-crossing it was closed on 
14. What is the entropy of the set of probabilities? 

Ex. 2: From a shuffled pack of cards one is drawn. Three events are distin
guished: 

El the drawing of the King of Clubs, 
E2: the drawing of any Spade 
E3: the drawing of any other card. 

What is the entropy of the variety of the distinguishable events? 
Ex. 3: What is the entropy of the variety in one throw of an unbiased die? 
Ex. 4: What is the entropy in the variety of the set of possibilities of the outcomes 

(with their order preserved) of two successive throws of an unbiased die? 
Ex. 5: (Continued.) What is the entropy ofn successive throws? 
*Ex. 6: What is the limit of -p log pas p tends to zero? 

9/12. The entropy so calculated has several important properties. 
First, it is maximal, for a given number (n) of probabilities, when 
the probabilities are all equal. His then equal to log n, precisely 
the measure ofvariety defined in S.7/7. (Equality of the probabil
ities, in each column, was noticed inS. 9/10 to be necessary for the 
constraint to be minimal, i.e. for the variety to be maximal.) Sec
ondly, different H's derived from different sets can, with suitable 
qualifications, be combined to yield an average entropy. 

Such a combination is used to find the entropy appropriate to a 
Markov chain. Each column (or row if written in the transposed 
form) has a set of probabilities that sum to 1. Each can therefore 
provide an entropy. Shannon defines the entropy (of one step of 
the chain) as the average of these entropies, each being weighted 
by the proportion in which that state, corresponding to the col
umn, occurs when the sequence has settled to its equilibrium (S.9/ 
6). Thus the transition probabilities of that section, with corre
sponding entropies and equilibria! proportions shown below, are 

B 

B 1/4 
w 3/4 
p 0 

Entropy: 0.811 
Equilibria! proportion: 0.449 
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Then the average entropy (per step in the sequence) is 

0.449 X 0.811 + 0.429 X 0.811 + 0.122 X 1.061 = 0.842 bits. 

A coin spun repeatedly produces a series with entropy, at each 
spin, of 1 bit. So the series oflocations taken by one of the insects 
as time goes on is not quite so variable as the series produced by 
a spun coin, for 0.842 is less than 1.00. In this way Shannon's 
measure enables different degrees of variety to be compared. 

The reason for taking a weighted average is that we start by 
finding three entropies: 0.811, 0.811, and 1.061; and from them 
we want one. Were they all the same we would obviously just use 
that value, but they are not. We can, however, argue thus: When 
the system has reached equilibrium, 45°/0 of the insects will be at 
state B, 43% at W, and 12% at P. This is equivalent, as the insects 
circulate between all the states, to saying that each insect spends 
45%ofits time atB, 43% atW, and 12% atP. In other words, 45% 
of its transitions will be from B, 43% from W, and 12% from P. 
Thus 45% of its transitions will be with entropy, or variety, of 
0.811, 43% also with 0.811, and 12% with 1.061. Thus, transi
tions with an entropy of 0.811 will be frequent (and the value 
"0.811" should count heavily) and those with an entropy of 1.061 
will be rather rare (and the value "1.061" should count little). So 
the average is weighted: 88% in favour of 0.811 and 12% in 
favour of 1.061, i.e. 

· ht d _ 45 X 0.811 + 43 X 0.811 + 12 X 1.061 
we1g e average - 45 + 43 + 12 

which is, effectively, what was used above. 

Ex. I: Show that the series ofH's and T's produced by a spun coin has an average 
entropy of 1 bit per spin. (Hint: Construct the matrix of transition probabili
ties.) 

Ex. 2: (Continued.) What happens to the entropy if the coin is biased? (Hint: Try 
the effect of changing the probabilities.) 

9/13. Before developing the subject further, it is as well to notice 
that Shannon's measure, and the various important theorems that 
use it, make certain assumptions. These are commonly fulfilled in 
telephone engineering but are by no means so commonly fulfilled 
in biological work, and in the topics discussed in this book. His 
measure and theorems must therefore be applied cautiously. His 
main assumptions are as follows. 

(1) If applied to a set of probabilities, the various fractions must 
add up to 1; the entropy cannot be calculated over an incomplete 
set of possibilities. 
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(2) If applied to an information source, with several sets of prob
abilities, the matrix of transition probabilities must be Markovian; 
that is to say, the probability of each transition must depend only 
on the state the system is at (the operand) and not on the states it 
was at earlier (S.9/7). If necessary, the states of the source should 
first be re-defined, as in S.9/8, so that it becomes Markovian. 

(3) The several entropies of the several columns are averaged 
(S.9112) using the proportions of the terminal equilibrium (S.9/6). 
It follows that the theorems assume that the system, however it 
was started, has been allowed to go on for a long time so that the 
states have reached their equilibria! densities. 

Shannon's results must therefore be applied to biological mate
rial only after a detailed check on their applicability has been made. 

A similar warning may be given before any attempt is made to 
play loosely, and on a merely verbal level, with the two entropies 
of Shannon and of statistical mechanics. Arguments in these sub
jects need great care, for a very slight change in the conditions or 
assumptions may make a statement change from rigorously true 
to ridiculously false. Moving in these regions is like moving in a 
jungle full of pitfalls. Those who know most about the subject are 
usually the most cautious in speaking about it. 

Ex. I: Work out mentally the entropy of the matrix with transition probabilities 

A 

A 0.2 
B 0.7 
c 0.1 

B C 

0 0.3 
1.0 0.3 
0 0.4 

(Hint: This is not a feat of calculation but of finding a peculiar simplicity. 
What does that 1 in the main diagonal mean (Ex. 9/5/1 )? So what is the final 
equilibrium of the system? Do the entropies of columns A and C matter? And 
what is the entropy of B 's column (Ex. 9/1116)?) 

Ex. 2: (Continued.) Explain the paradox: "When the system is at A there is vari
ety or uncertainty in the next state, so the entropy cannot be zero." 

9/14. A little confusion has sometimes arisen because Shannon's 
measure of"entropy", given over a set of probabilities P1, P2, •••• 

is the sum of Pi log Pi, multiplied by -1 whereas the definition 
given by Wiener in his Cybernetics for "amount of information" 
is the same sum of Pi log Pi unchanged (i.e. multiplied by +I). 
(The reader should notice that p log p is necessarily negative, so 
the multiplier "-1" makes it a positive number.) 

There need however be no confusion, for the basic ideas are 
identical. Both regard information as "that which removes uncer-
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tainty", and both measure it by the amount of uncertainty it 
removes. Both further are concerned basically with the gain or 
increase in information that occurs when a message arrives-the 
absolute quantities present before or after being of minor interest. 

Now it is clear that when the probabilities are well spread, as in 
A of Fig. 9/1411, the uncertainty is greater than when they are 
compact, as in B. 

Fig. 9/14/1 

So the receipt of a message that makes the recipient revise his esti
mate, of what will happen, from distribution A to distribution B, 
contains a positive amount of information. Now I.p 1ogp (where 
I. means "the sum of''), if applied to A, will give a more negative 
number than if applied to B; both will be negative but A's will be 
the larger in absolute value. Thus A might give-20 for the sum 
and B might give -3. If we use I.p logp multiplied by plus 1 as 
amount of information to be associated with each distribution, i.e. 
with each set of probabilities, then as, in general, 

Gain (of anything) = Final quantity minus initial quantity 

so the gain of information will be 
(-3)-(-20) 

which is+ 17, a positive quantity, which is what we want. Thus, 
looked at from this point of view, which is Wiener's, I.p log p 
should be multiplied by plus 1, i.e. left unchanged; then we calcu
late the gain. 

Shannon, however, is concerned throughout his book with the 
special case in which the received message is known with cer
tainty. So the probabilities are all zero except for a single I. Over 
such a set I.p log p is just zero; so the final quantity is zero, and 
the gain of information is 

0- (initial quantity). 
In other words, the information in the message, which equals the 
gain in information, is I.p 1ogp calculated over the initial distri
bution, multiplied by minus 1, which gives Shannon's measure. 
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Thus the two measures are no more discrepant than are the two 
ways of measuring "how far is point Q to the right of point P" 
shown in Fig. 9/14/2. 

VJ ~ -11 0 +1 2. ~ t 5 6 r? I I I I I 

~p ~ 
' s ~ -7 -6 I I I I I I 

+11 ~ -.5 -4 -3 -2. -1 0 

Fig. 9/14/2 

Here P and Q can be thought of as corresponding to two degrees 
of uncertainty, with more certainty to the right, and with ames
sage shifting the recipient from P to Q. 

The distance from P to Q can be measured in two ways, which 
are clearly equivalent. Wiener's way is to lay the rule against P 
and Q (as Win the Fig.); then the distance that Q lies to the right 
of P is given by 

(Q's reading) minus (P's reading). 

Shannon's way (Sin the Fig.) is to lay the zero opposite Q, and 
then the distance that Q is to the right of P is given by 

minus (P's reading). 

There is obviously no real discrepancy between the two methods. 

9/15. Channel capacity. It is necessary to distinguish two ways of 
reckoning "entropy" in relation to a Markov chain, even after the 
unit (logarithmic base) has been decided. The figure calculated in 
S.9/12, from the transition probabilities, gives the entropy, or 
variety to be expected, at the next, single, step of the chain. Thus 
if an unbiased coin has already given T T H H T H H H H, the 
uncertainty of what will come next amounts to I bit. The symbol 
that next follows has also an uncertainty of I bit; and so on. So the 
chain as a whole has an uncertainty, or entropy, of 1 bit per step. 

Two steps should then have an uncertainty, or variety, of2 bits, 
and this is so; for the next two steps can be any one of HH, HT, 
THor TT, with probabilities 1/4, 1/4, 1/4 and 14, which gives H 
= 2 bits. Briefly it can be said that the entropy of a length of 
Markov chain is proportional to its length (provided always that 
it has settled down to equilibrium). 

Quite another way of making the measurement on the chain is 
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introduced when one considers how fast in time the chain is being 
produced by some real physical process. So far this aspect has 
been ignored, the sole graduation being in terms of the chain's 
own steps. The new scale requires only a simple rule of proportion 
for its introduction. Thus if(as in S.9/12) the insects' "unit time" 
for one step is twenty seconds, then as each 20 seconds produces 
0 84 bits, 60 seconds will produce (60/20)0 84 bits; so each insect 
is producing variety oflocation at the rate of2 53 bits per minute. 

Such a rate is the most natural way of measuring the capacity of 
a channel, which is simply anything that can be driven by its input 
to take, at each moment, one of a variety of states, and which can 
transmit that state to some receiver. The rate at which it can trans
mit depends both on how fast the steps can succeed one another 
and on the variety available at each step. 

It should be noticed that a "channel" is defined in cybernetics 
purely in terms of certain behavioural relations between two 
points; if two points are so related then a "channel" exists between 
them, quite independently of whether any material connexion can 
be seen between them. (Consider, for instance, Exs. 4/15/2, 6/7 I 
1.) Because of this fact the channels that the cyberneticist sees 
may be very different from those seen by one trained in another 
science. In elementary cases this is obvious enough. No one 
denies the reality of some functional connexion from magnet to 
magnet, though no experiment has yet demonstrated any interme
diate structure. 

Sometimes the channel may follow an unusual path. Thus the 
brain requires information about what happens after it has emitted 
"commands" to an organ, and usually there is a sensory nerve 
from organ to brain that carries the "monitoring" information. 
Monitoring the vocal cords, therefore, may be done by a sensory 
nerve from cords to brain. An effective monitoring, however, can 
also be achieved without any nerve in the neck by use of the sound 
waves, which travel through the air, linking vocal cords and brain, 
via the ear. To the anatomist this is not a channel, to the commu
nication engineer it is. Here we need simply appreciate that each 
is right within his own branch of science. 

More complex applications of this principle exist. Suppose we 
ask someone whether 287 times 419 is 118213; he is likely to reply 
"I can't do it in my head-give me pencil and paper". Holding the 
numbers 287 and 419, together with the operation "multiply", as 
parameters he will then generate a process (a transient in the termi
nology of S.4/5) which will set up a series of impulses passing 
down the nerves ofhis arm, generating a series of pencil marks on 
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the paper, then the marks will affect his retina and so on to his brain 
where an interaction will occur with the trace (whatever that may 
be) of "118213"; he will then give a final answer. What we must 
notice here is that this process, from brain, through motor cortex, 
arm, pencil, marks, light rays, retina, and visual cortex back to 
brain, is, to the communication engineer, a typical "channel", link
ing "transmitter" to "receiver". To the cyberneticist, therefore, the 
white matter, and similar fibres, are not the only channels of com
munication available to the brain: some of the communication 
between part and part may take place through the environment. 

9/16. Redundancy. In S.7114 it was stated that when a constraint 
exists, advantage can usually be taken of it. An illustration of this 
thesis occurs when the transmission is incessant. 

For simplicity, reconsider the traffic lights -Red, Yellow, and 
Green-that show only the combinations 

(I) Red 
(2) Red and Yellow 
(3) Green 
(4) Yellow. 

Each component (each lamp or colour) can be either lit or unlit, so 
the total variety possible, if the components were independent 
would be 8 states. In fact, only 4 combinations are used, so the set 
shows constraint. 

Now reconsider these facts after recognising that a variety of 
four signals is necessary: 

(i) Stop 
(ii) Prepare to go 

(iii) Go 
(iv) Prepare to stop. 

If we have components that can each take two values, +or-, we can 
ask how many components will be necessary to give this variety. 
The answer is obviously two; and by a suitable re-coding, such as 

++=Stop 
+ - = Prepare to go 
--=Go 
- + = Prepare to stop 

the same variety can be achieved with a vector of only two com
ponents. The fact that the number of components can be reduced 
(from three to two) without loss of variety can be expressed by 
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saying that the first set of vectors shows redundancy, here of one 
lamp. 

The constraint could clearly be taken advantage of. Thus, if 
electric lights were very expensive, the cost of the signals, when 
re-coded to the new form, would be reduced to two-thirds. 

Exactly the same lights may also show quite a different redun
dancy if regarded as the generators of a different set of vectors. 
Suppose that the lights are clock-operated, rather than traf
fic-operated, so that they go through the regular cycle of states (as 
numbered above) 

... 3, 4, 1, 2, 3, 4, 1, 2, 3, ... 

The sequence that it will produce (regarded as a vector, S.9/9) 
can only be one of the four vectors: 

(i)(l, 2, 3, 4, 1, 2, ... ) 
(ii)(2, 3, 4, 1, 2, 3, ... ) 

(iii)(3,4, 1,2,3,4, ... ) 
(iv)(4, 1,2,3,4, 1, ... ) 

Were there independence at each step, as one might get from a 
four-sided die, and n components, the variety would be 4n; in fact 
it is only 4. To make the matter quite clear, notice that the same 
variety could be obtained by vectors with only one component: 

(i) (1) 
(ii) (2) 

(iii) (3) 
(iv)(4) 

all the components after the first being omitted; so all the later 
components are redundant. 

Thus a sequence can show redundancy if at each step the next 
value has not complete independence of the earlier steps. (Com
pare S.9/10.) If the sequence is a Markov chain, redundancy will 
be shown by its entropy having a value less than the maximum. 

The fact that the one set of traffic lights provides two grossly 
different sets of vectors illustrates yet again that great care is nec
essary when applying these concepts to some object, for the object 
often provides a great richness of sets for discussion. Thus the 
question "Do traffic lights show redundancy?" is not admissible; 
for it fails to indicate which of the sets of vectors is being consid
ered; and the answer may vary grossly from set to set. 

This injunction is particularly necessary in a book addressed to 
workers in biological subjects, for here the sets of vectors are 
often definable only with some difficulty, helped out perhaps with 
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some arbitrariness. (Compare S.6114.) There is therefore every 
temptation to let one's grasp of the set under discussion be intui
tive and vague rather than explicit and exact. The reader may 
often find that some intractable contradiction between two argu
ments will be resolved if a more accurate definition of the set 
under discussion is achieved; for often the contradiction is due to 
the fact that the two arguments are really referring to two distinct 
sets, both closely associated with the same object or organism. 

Ex. 1: In a Table for the identification of bacteria by their power to ferment sug
ars, 62 species are noted as producing "acid", "acid and gas", or "nothing" 
from each of 14 sugars. Each species thus corresponds to a vector of 14 com
ponents, each of which can take one of three values. Is the set redundant ? 
To how many components might the vector be reduced ? 

Ex. 2: If a Markov chain has no redundancy, how may its matrix be recognised 
at a glance? 

9/17. It is now possible to state what is perhaps the most funda
mental of the theorems introduced by Shannon. Let us suppose 
that we want to transmit a message with H bits per step, as we 
might want to report on the movements of a single insect in the 
pool. His here 0 84 bits per step (S. 9/12), or, as the telegraphist 
would say, per symbol, thinking of such a series as ... P W B W 
B B B W P P P W B W P W .... Suppose, for definiteness, that 20 
seconds elapse between step and step. Since the time-rate of these 
events is now given, H can also be stated as 2.53 bits per minute. 
Shannon's theorem then says that any channel with this capacity 
can carry the report, and that it cannot be carried by any channel 
with less than this capacity. It also says that a coding always exists 
by which the channel can be so used. 

It was, perhaps, obvious enough that high-speed channels could 
report more than slow; what is important about this theorem is, 
first, its great generality (for it makes no reference to any specific 
machinery, and therefore applies to telegraphs, nerve-fibres, con
versation, equally) and secondly its quantitative rigour. Thus, if 
the pond were far in the hills, the question might occur whether 
smoke signals could carry the report. Suppose a distinct puff 
could be either sent or not sent in each quarter-minute, but not 
faster. The entropy per symbol is here I bit, and the channel's 
capacity is therefore 4 bits per minute. Since 4 is greater than 2 53, 
the channel can do the reporting, and a code can be found, turning 
positions to puffs, that will carry the information. 

Shannon has himself constructed an example which shows 
exquisitely the exactness of this quantitative law. Suppose a 
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source is producing letters A, B, C, D with frequencies in the ratio 
of 4, 2, 1, 1 respectively, the successive symbols being independ
ent A typical portion of the sequence would be , , , B A A B D A 
A A A B CAB A AD A .... At equilibrium the relative frequen
cies of A, B, C, D would be I /2, I /4, I /8, 1/8 respectively, and the 
entropy is 14 bits per step (i.e. per letter). 

Now a channel that could produce, at each step, any one of four 
states without constraint would have a capacity of 2 bits per step. 
Shannon's theorem says that there must exist a coding that will 
enable the latter channel (of capacity 2 bits per step) to transmit 
such a sequence (with entropy 1 3 I 4 bits per step) so that any 1 ong 
message requires fewer steps in the ratio of2 to 1 3/4, i.e. of8 to 
7. The coding, devised by Shannon, that achieves this is as fol
lows. First code the message by 

~ A 
0 

e.g. the message above, 

B C D 

10 110 111 

~B.AAB.D .. AAAAB.C .. AB.AAD .. A 
1 0 0 0 1 0 1 1 1 0 0 0 0 I 0 I 1 0 0 1 0 0 0 1 1 1 0 

Now divide the lower line into pairs andre-code into a new set of 
letters by 

~ 00 01 10 11 
E F G H 

These codes convert any message in "A to D" into the letters "E 
to H", and conversely, without ambiguity. What is remarkable is 
that if we take a typical set of eight of the original letters (each 
represented with its typical frequency) we find that they can be 
transmitted as seven of the new: 

AAAAB B C D 
~00001010 01 

. E. E.G.G H F H 

thus demonstrating the possibility of the compression, a compres
sion that was predicted quantitatively by the entropy of the origi
nal message! 

Ex. 1: Show that the coding gives a one-one correspondence between message 
sent and message received (except for a possible ambiguity in the first letter). 
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Ex. 2: Printed English has an entropy of about 10 bits per word. We can read 
about 200 words per minute. Give a lower bound to the channel capacity of 
the optic nerve. 

Ex. 3: If a pianist can put each of ten fingers on any one of three notes, and can 
do this 300 times a minute, find a lower bound to the channel capacity of the 
nerves to the upper limbs. 

Ex. 4: A bank's records, consisting of an endless sequence of apparently random 
digits, 0 to 9, are to be encoded into Braille for storage. If 10,000 digits are 
to be stored per hour, how fast must the Braille be printed if optimal coding 
is used? (Hint: There are 64 symbols in the Braille "alphabet".) 

9/18. One more example will be given, to show the astonishing 
power that Shannon's method has of grasping the essentials in 
communication. Consider the system, of states a, b, c, d, with tran
sition probabilities 

a b c d 

a 0 0 0.3 0.3 
b 0.6 0.6 0 0 
c 0.4 0.4 0 0 
d 0 0 0.7 0.7 

A typical sequence would be 

... b b b cab cab b c d d a c dab c a c d d d d d dab b ... 

The equilibria! probabilities are 6/35, 9/35, 6/35, 14/35 respec
tively. The entropy is soon found to be 0.92 bits per letter. Now 
suppose that the distinction between a and dis lost, i.e. code by 

~ a 
X 

b 
b 

c 
c 

d 
X 

Surely some information must be lost? Let us see. There are 
now only three states X, b, c, where X means "either a or d". Thus 
the previous message would now start ... b b b c X b c X b b c X 
X X c .... The transition probabilities are found to be 

X b c 

X 0.70 0 I 
b 0.18 0.6 0 
c 0.12 0.4 0 

(Thus c ~X must be 1 because c always went to either a or d; the 
transitions from a and from d need weighting by the (equilibria!) 
probabilities of being at a or d.) The new states have equilibria! 
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probabilities of X, 20/35; b, 9/35; c, 6/35 and entropies of Hx, 
L173; Hb, 0.971; He, 0. So the entropy of the new series is 0.92 
bits per letter-exactly the same as before! 

This fact says uncompromisingly that no information was lost 
when the d's and a's were merged to X's. It says, therefore, that 
there must be some way of restoring the original four-letter mes
sagefrom the three, of telling which oftheX's were a's and which 
were d's. Closer examination shows that this can be done, strik
ingly verifying the rather surprising prediction. 

Ex.: How is 
b b be X b eX b b cXXXc XX be X cXXXXXXX b b 

to be de-coded to its original form? 

NOISE 

9/19. It may happen that the whole input to a transducer can be 
divided into two or more components, and we wish to consider the 
components individually. This happened in Ex. 8/17/3, where the 
two messages were sent simultaneously through the same trans
ducer and recovered separately at the output. Sometimes, how
ever, the two inputs are not both completely deducible from the 
output. If we are interested solely in one of the input components, 
as a source of variety, regarding the other as merely an unavoida
ble nuisance, then the situation is commonly described as that of 
a "message corrupted by noise". 

It must be noticed that noise is in no intrinsic way distinguish
able from any other form of variety. Only when some recipient is 
given, who will state which of the two is important to him, is a dis
tinction between message and noise possible. Thus suppose that 
over a wire is coming both some conversation and some effects 
from a cathode that is emitting irregularly. To someone who 
wants to hear the conversation, the variations at the cathode are 
"noise"; but to the engineer who is trying to make accurate meas
urements of what is going on at the cathode, the conversation is 
"noise". "Noise" is thus purely relative to some given recipient, 
who must say which information he wants to ignore. 

The point is worth emphasis because, as one of the commonest 
sources of uninteresting variety in electronic systems is the ther
mal dance (Brownian movement) of the molecules and electrons, 
electronic engineers tend to use the word "noise" without qualifi
cation to mean this particular source. Within their speciality they 
will probably continue to use the word in this sense, but workers 
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in other sciences need not follow suit. In biology especially 
"noise" will seldom refer to this particular source; more com
monly, the "noise" in one system will be due to some other mac
roscopic system from which the system under study cannot be 
completely isolated. 

Should the two (or more) messages be completely and simultane
ously recoverable, by de-coding of the output, the concept of noise 
is of little use. Chiefly it is wanted when the two messages (one 
wanted, one unwanted) interact with some mutual destruction, 
making the coding not fully reversible. To see this occur let us go 
back to the fundamental processes. The irreversibility must mean 
that the variety is not sustained (S.S/6), and that distinct elements at 
the inputs are represented at the output by one element. Consider 
the case in which the input is a vector with two components, 

the first having possible values of A, B or C 
, second , E, For G. 

Suppose the output is a variable that can take values 1, 2, ... , 9, 
and that the coding was 

~ AE AF AG BE BF BG CE CF CG 
6 4 2 2 9 1 3 7 5 

If now the input message were the sequence B A C B A CA A B B, 
while the "noise" gave simultaneously the sequence G F FEE E 
G F G E, then the output would be 

1, 4, 7, 2, 6, 3, 2, 4, 1, 2 

and the de-coding could give, for the first component, only the 
approximation 

B, A, C, A orB, A, C, A orB, A, B, A or B. 

Thus the original message to this input has been "corrupted" by 
"noise" at the other input. 

In this example the channel is quite capable of carrying themes
sage without ambiguity if the noise is suppressed by the second 
input being held constant, atE say. For then the coding is one-one: 

~ A B C 
6 2 3 

and reversible. 
It will be noticed that the interaction occurred because only 

eight of the nine possible output states were used. By this perma
nent restriction, the capacity of the channel was reduced. 
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Ex. I: What is the coding, of first input to output, if the second output is kept con
stant (i) at F; (ii) at G? 

Ex. 2: A system of three states -P, Q, R-isto transmit changes at two inputs, 
a and !3, each of which can take two states. The states of the inputs and of 
the system change in step. Is noise-free transmission possible? 

9/20. Distortion. It should be noticed that falsification of a mes
sage is not necessarily identical with the effect of noise. "If a par
ticular transmitted signal always produces the same received 
signal, i.e. the received signal is a definite function of the trans
mitted signal, then the effect may be called distortion. If this func
tion has an inverse-no two transmitted signals producing the 
same received signal-distortion may be corrected, at least in 
principle, by merely performing the inverse functional operation 
on the received signal." (Shannon.) 

Ex. I: Is the change by which the erect object falls on to the retina inverted a dis
tortion or a corruption ? 

Ex. 2: A tension applied to a muscle evokes a steady stream of impulses whose 
frequency is not proportional to the tension. Is the deviation from propor
tionality a distortion or a corruption? 

Ex. 3: (Continued.) If the nerve carrying the impulses is subjected to alcohol 
vapour of sufficient strength it will cease to conduct for all tensions. Is this 
a distortion or a corruption? 

9/21. Equivocation. A suitable measure for the degree of corrup
tion has not, so far as I am aware, been developed for use in the 
basic cases. In the case of the channel that transmits incessantly, 
however, Shannon has developed the appropriate measure. 

It is assumed first that both the original signals and the received 
signals form Markov chains of the type defined in S.9/4. The data 
of the messages can then be presented in a form which shows the 
frequencies (or probabilities) with which all the possible combi
nations of the vector (symbol sent, symbol received) occur. Thus, 
to use an example of Shannon's suppose O's and 1 's are being 
sent, and that the probabilities (here relative frequencies) of the 
symbols being received are: 

Symbol sent 
Symbol received 
Probability 

0 0 1 1 
0 1 0 1 

0.495 0.005 0.005 0.495 

Of every thousand symbols sent, ten arrive in the wrong form, an 
error of one per cent. 

At first sight this "one per cent wrong" might seem the natural 
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measure for the amount of information lost, but this interpretation 
leads to nonsense. Thus if, in the same transmission, the line were 
actually cut and the recipient simply tossed a coin to get a "mes
sage" he would get about a half of the symbols right, yet no infor
mation whatever would have been transmitted. Shannon has 
shown conclusively that the natural measure is the equivocation, 
which is calculated as follows. 

First find the entropy over all possible classes: 

- 0.495 log 0.495- 0.005 log 0.005 
- 0.005 log 0.005- 0.495 log 0.495 

Call this H 1 it is 1.081 bits per symbol. Next collect together the 
received signals, and their probabilities; this gives the table 

Symbol received 0 I 
Probability 0.5 0.5 

Find its entropy: 

- 0.5 log 0.5- 0.5 log 0.5 

Call this H2• It is 1.000 bits per symbol. Then the equivocation is 
H 1 - H 2 : 0.081 bits per symbol. 

The actual rate at which information is being transmitted, 
allowance being made for the effect of noise, is the entropy of the 
source, less the equivocation. The source here has entropy 1.000 
bits per symbol, as follows from: 

Symbol sent 0 I 
Probability 0.5 0.5 

So the original amount supplied is 1.000 bits per symbol. Of this 
0.919 gets through and 0.081 is destroyed by noise. 

Ex. 1: What is the equivocation of the transmission ofS.9/19, if all nine combi
nations of letters occur, in the long run, with equal frequency? 

Ex. 2: (Continued.) What happens to the equivocation if the first input uses only 
the symbols B and C, so that the combinations BE, BF, BG, CE, CF, CG 
occur with equal frequencies? Is the answer reasonable? 

*Ex. 3: Prove the following rules, which are useful when we want to find the 
value ofthe expression-p loga p, and p is either very small or very near to I: 

(i) If p = xy, -p!ogap = -xy(Iog~ + IogaY); 

( .. ) f -z ] zX 10-z 
n I p = 10 , -p ogaP = --; 

log 10a 

2 

(iii) If pis very close to I, put 1-p = q, and -p!ogaP = -1 -
1-(q- q__ ... ) 

ogea 2 
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Ex. 4: Find -p log2 p when pis 0.00025. (Hint: Write pas 2.5 x 1 o-4 and use (i)). 

Ex. 5: During a blood count, lymphocytes and monocytes are being examined 
under the microscope and discriminated by the haematologist. If he mistakes 
one in every hundred lymphocytes for a monocyte, and one in every two 
hundred monocytes for a lymphocyte, and ifthese cells occur in the blood in 
the ratio of 19 lymphocytes to 1 monocyte, what is his equivocation? (Hint: 
Use the results of the previous two exercises.) 

9/22. Errorf"ree transmission. We now come to Shannon's funda
mental theorem on the transmission of information in the presence 
of noise (i.e. when other, irrelevant, inputs are active). It might be 
thought that when messages are sent through a channel that sub
jects each message to a definite chance of being altered at random, 
then the possibility of receiving a message that is correct with cer
tainty would be impossible. Shannon however has shown conclu
sively that this view, however plausible, is mistaken. Reliable 
messages can be transmitted over an unreliable channel. The 
reader who finds this incredible must go to Shannon's book for 
the proof; here 1 state only the result. 

Let the information to be transmitted be of quantity H, and sup
pose the equivocation to beE, so that information of amount H-E 
is received. (It is assumed, as in all Shannon's book, that the trans
mission is incessant.) What the theorem says is that if the channel 
capacity be increased by an amount not less thanE-by the provi
sion perhaps of another channel in parallel-then it is possible so 
to encode the messages that the fraction of errors still persisting 
may be brought as near zero as one pleases. (The price of a very 
small fraction of errors is delay in the transmission, for enough 
message-symbols must accumulate to make the average of the 
accumulated material approach the value of the average over all 
time.) 

Conversely, with less delay, one can still make the errors as few 
as one pleases by increasing the channel capacity beyond the min
imal quantity E. 

The importance of this theorem can hardly be overestimated in 
its contribution to our understanding of how an intricately con
nected system such as the cerebral cortex can conduct messages 
without each message gradually becoming so corrupted by error 
and interference as to be useless. What the theorem says is that if 
plenty of channel capacity is available then the errors may be 
kept down to any level desired. Now in the brain, and especially 
in the cortex there is little restriction in channel capacity, for 
more can usually be obtained simply by the taking of more fibres, 
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whether by growth in embryogeny or by some functional tak
ing-over in learning. 

The full impact of this theorem on neuropsychology has yet to 
be felt. Its power lies not so much in its ability to solve the prob
lem "How does the brain overcome the ever-increasing corruption 
of its internal messages?" as in its showing that the problem 
hardly arises, or that it is a minor, rather than a major, one. 

The theorem illustrates another way in which cybernetics can 
be useful in biology. Cybernetic methods may be decisive in the 
treatment of certain difficult problems not by a direct winning of 
the solution but by a demonstration that the problem is wrongly 
conceived, or based on an erroneous assumption. 

Some of today's outstanding problems about the brain and 
behaviour come to us from mediaeval and earlier times, when the 
basic assumptions were very different and often, by today's stand
ards, ludicrously false. Some of these problems are probably 
wrongly put, and are on a par with the problem, classic in medi
aeval medicine: what are the relations between the four elements 
and the four humours? This problem, be it noticed, was never 
solved-what happened was that when chemists and pathologists 
got to know more about the body they realised that they must 
ignore it. 

Some of our classic problems in the brain-perhaps some of 
those relating to localisation, causation, and learning-may well 
be found to be of this type. It seems likely that the new insight 
given by cybernetics may enable us to advance to a better discrim
ination; if this happens, it will dispose of some questions by a 
clear demonstration that they should not be asked. 
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PART THREE 

REGULA TTON AND CONTROL 

The fourldation of all physiology must be the physiology 
of permanence. 

(Darlington) 





REGULATlON lN BlOLOGlCAL SYSTEMS 

Chapter 10 

REGULATION IN BIOLOGICAL 
SYSTEMS 

10/1. The two previous Parts have treated of Mechanism (and the 
processes within the system) and Variety (and the processes of 
communication between system and system). These two subjects 
had to be studied first, as they are fundamental. Now we shall use 
them, and in Part III we shall study what is the central theme of 
cybernetics -regulation and control. 

This first chapter reviews the place of regulation in biology, and 
shows briefly why it is of fundamental importance. It shows how 
regulation is essentially related to the flow of variety. The next 
chapter (11) studies this relation in more detail, and displays a 
quantitative law-that the quantity of regulation that can be 
achieved is bounded by the quantity of information that can be 
transmitted in a certain channel. The next chapter (12) takes up the 
question of how the abstract principles of chapter 11 are to be 
embodied-what sort of machinery can perform what is wanted. 
This chapter introduces a new sort of machine, the Markovian, 
which extends the possibilities considered in Part I. The remain
ing chapters consider the achievement of regulation and control as 
the difficulties increase, particularly those that arise when the sys
tem becomes very large. 

At first, in Part III, we will assume that the regulator is already 
provided, either by being inborn, by being specially made by a 
manufacturer, or by some other means. The question of what 
made the regulator, of how the regulator, which does such useful 
things, came itself to be made will be taken up at S.13/10. 

10/2. The present chapter aims primarily at supplying motive to 
the reader, by showing that the subjects discussed in the later 
chapters (11 onwards) are of fundamental importance in biology. 
The subject of regulation in biology is so vast that no single chap
ter can do it justice. Cannon's Wisdom of the Body treated it ade
quately so far as internal, vegetative activities are concerned, but 
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there has yet to be written the book, much larger in size, that shall 
show how all the organism's exteriorly-directed activities-its 
"higher" activities-are all similarly regulatory, i.e. homeostatic. 
In this chapter I have had to leave much of this to the reader's 
imagination, trusting that, as a biologist, he will probably already 
be sufficiently familiar with the thesis. The thesis in any case has 
been discussed to some extent in Design for a Brain. 

The chief purpose of this chapter is to tie together the concepts 
of regulation, information, and survival, to show how intimately 
they are related, and to show how all three can be treated by a 
method that is entirely uniform with what has gone before in the 
book, and that can be made as rigorous, objective, and unambig
uous as one pleases. 

10/3. The foundation. Let us start at the beginning. The most basic 
facts in biology are that this earth is now two thousand million 
years old, and that the biologist studies mostly that which exists 
today. From these two facts follow a well-known deduction, 
which I would like to restate in our terms. 

We saw in S.4/23 that if a dynamic system is large and com
posed of parts with much repetition, and if it contains any prop
erty that is autocatalytic, i.e. whose occurrence at one point 
increases the probability that it will occur again at another point, 
then such a system is, so far as that property is concerned, essen
tially unstable in its absence. This earth contained carbon and 
other necessary elements, and it is a fact that many combinations 
of carbon, nitrogen, and a few others are self-reproducing. It fol
lows that though the state of "being lifeless" is almost a state of 
equilibrium, yet this equilibrium is unstable (S.S/6), a single devi
ation from it being sufficient to start a trajectory that deviates 
more and more from the "lifeless" state. What we see today in the 
biological world are these "autocatalytic" processes showing all 
the peculiarities that have been imposed on them by two thousand 
million years of elimination of those forms that cannot survive. 

The organisms we see today are deeply marked by the selective 
action of two thousand million years' attrition. Any form in any 
way defective in its power of survival has been eliminated; and 
today the features of almost every form bear the marks of being 
adapted to ensure survival rather than any other possible outcome. 
Eyes, roots, cilia, shells and claws are so fashioned as to maximise 
the chance of survival. And when we study the brain we are again 
studying a means to survival. 
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10/4. What has just been said is well enough known. It enables us, 
however, to join these facts on to the ideas developed in this book 
and to show the connexion exactly. 

For consider what is meant, in general, by "survival". Suppose 
a mouse is trying to escape from a cat, so that the survival of the 
mouse is in question. As a dynamic system, the mouse can be in 
a variety of states; thus it can be in various postures, its head can 
be turned this way or that, its temperature can have various val
ues, it may have two ears or one. These different states may occur 
during its attempt to escape and it may still be said to have sur
vived. On the other hand if the mouse changes to the state in 
which it is in four separated pieces, or has lost its head, or has 
become a solution of amino-acids circulating in the eat's blood 
then we do not consider its arrival at one of these states as corre
sponding to "survival". 

The concept of "survival" can thus be translated into perfectly 
rigorous terms, similar to those used throughout the book. The 
various states (M for Mouse) that the mouse may be in initially 
and that it may pass into after the affair with the cat is a set Mu 
M 2, ... , M~o ... , Mn. We decide that, for various reasons of what is 
practical and convenient, we shall restrict the words "living 
mouse" to mean the mouse in one of the states in some subset of 
these possibilities, in M1 to Mk say. If now some operation C (for 
cat) acts on the mouse in state M;. and C(M;) gives, say, M 2, then 
we may say that Mhas "survived" the operation of C, for M 2 is in 
the set M 1, ... Mk. 

If now a particular mouse is very skilled and always survives 
the operation C, then all the states C(MJ, C(MJ, ... , C(MJJ, are 
contained in the set M 1, ... , M1c We now see that this representa
tion of survival is identical with that of the "stability" of a set (S.5/ 
5). Thus the concepts of"survival" and "stability" can be brought 
into an exact relationship; and facts and theorems about either can 
be used with the other, provided the exactness is sustained. 

The states Mare often defined in terms of variables. The states 
Mb ... , Mk, that correspond to the living organism are then those 
states in which certain essential variables are kept within 
assigned ("physiological") limits. 

Ex. 1: If n is 10 and k is 5, what would the operation C(M7) = M9 correspond 
to? 

Ex. 2: (Continued.) What would the operation C(MJ = M4 correspond to? 
Ex. 3: What would be an appropriate definition of ''lethal", if C's attack were 

invariably fatal to M? 
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10/5. What is it survives, over the ages? Not the individual organ
ism, but certain peculiarly well compounded gene-patterns, par
ticularly those that lead to the production of an individual that 
carries the gene-pattern well protected within itself, and that, 
within the span of one generation, can look after itself. 

What this means is that those gene-patterns are specially likely 
to survive (and therefore to exist today) that cause to grow, 
between themselves and the dangerous world, some more or less 
elaborate mechanism for defence. So the genes in Testudo cause 
the growth of a shell; and the genes in Homo cause the growth of 
a brain. (The genes that did not cause such growths have long 
since been eliminated.) 
Now regard the system as one of parts in communication. In the 
previous section the diagram of immediate effects (of cat and 
mouse) was (or could be regarded as) 

[9~~ 
We are now considering the case in which the diagram is 

~~~~[!] 
in which E is the set of essential variables, D is the source of dis
turbance and dangers (such as C) from the rest of the world, and 
F is the interpolated part (shell, brain, etc.) formed by the gene
pattern for the protection of E. (F may also include such parts of 
the environment as may similarly be used forE's protection
burrow for rabbit, shell for hermit-crab, pike for pike-man, and 
sword (as defence) for swordsman.) 

For convenience in reference throughout Part TIT, let the states 
of the essential variables E be divided into a set T)V'those that cor
respond to "organism living" or "good"-and not-T)V'those that 
correspond to "organism not living" or "bad". (Often the classifi
cation cannot be as simple as this, but no difficulty will occur in 
principle; nothing to be said excludes the possibility of a finer 
classification.) 

To make the assumptions clear, here are some simple cases, as 
illustration. (Inanimate regulatory systems are given first for sim
plicity.) 

(1) The thermostatically-controlled water-bath. E is its temper
ature, and what is desired (11) is the temperature range between, 
say 36° and 37°C. D is the set of all the disturbances that may 
drive the temperature outside that range-addition of cold water, 
cold draughts blowing, immersion of cold objects, etc. F is the 
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whole regulatory machinery. F, by its action, tends to lessen the 
effect of D on E. 

(2) The automatic pilot. E is a vector with three components
yaw, pitch, and roll-and 11 is the set of positions in which these 
three are all within certain limits. Dis the set of disturbances that 
may affect these variables, such as gusts of wind, movements of 
the passengers in the plane, and irregularities in the thrusts of the 
engines. F is the whole machinery-pilot, ailerons, rudder, etc.
whose action determines how D shall affect E. 

(3) The bicycle rider. E is chiefly his angle with the vertical. , I 
is the set of small permissible deviations. Dis the set of those dis
turbances that threaten to make the deviation become large. F is 
the whole machinery-mechanical, anatomical, neuronic-that 
determines what the effect of D is on E. 

Many other examples will occur later. Meanwhile we can sum
marise by saying that natural selection favours those gene-pat
terns that get, in whatever way, a regulator F between the 
disturbances D and the essential variables E. Other things being 
equal, the better F is as a regulator, the larger the organism's 
chance of survival. 

Ex.: What variables are kept within limits by the following regulatory mecha
nisms: (i) the air-conditioner; (ii) the climber's oxygen supply; (iii) the wind
screen-wiper; (iv) the headlights of a car; (v) the kitchen refrigerator; (vi) the 
phototaxic plant; (vii) sun-glasses; (viii) the flexion reflex (a quick lifting of 
the foot evoked by treading on a sharp stone); (ix) blinking when an object 
approaches the eye quickly; (x) predictor for anti-aircraft gunfire. 

10/6. Regulation blocks the flow of variety. On what scale can any 
particular mechanism F be measured for its value or success as a 
regulator ? The perfect thermostat would be one that, in spite of 
disturbance, kept the temperature constant at the desired level. In 
general, there are two characteristics required: the maintenance of 
the temperature within close limits, and the correspondence of 
this range with the desired one. What we must notice in particular 
is that the set of permissible values, T], has less variety than the set 
of all possible values in E; for 11 is some set selected from the 
states of E. IfF is a regulator, the insertion ofF between D and E 
lessens the variety that is transmitted from D to E. Thus an essen
tial function ofF as a regulator is that it shall block the transmis
sion of variety from disturbance to essential variable. 

Since this characteristic also implies that the regulator's func
tion is to block the flow of information, let us look at the thesis 
more closely to see whether it is reasonable. 

Suppose that two water-baths are offered me, and I want to 
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decide which to buy. I test each for a day against similar distur
bances and then look at the records of the temperatures; they are 
as in Fig. 10/6/1: 

B ~~------------1 
Fig. 10/6/1 

There is no doubt that Model B is the better; and I decide this pre
cisely because its record gives me no information, as does A's, 
about what disturbances, of heat or cold, came to it. The thermom
eter and water in bath B have been unable, as it were, to see any
thing of the disturbances D. 

The same argument will apply, with obvious modifications, to 
the automatic pilot. If it is a good regulator the passengers will 
have a smooth flight whatever the gustiness outside. They will, in 
short, be prevented from knowing whether or not it is gusty out
side. Thus a good pilot acts as a barrier against the transmission 
of that information. 

The same argument applies to an air-conditioner. Ifl live in an 
air-conditioned room, and can tell, by the hotness of the room, 
that it is getting hot outside, then that conditioner is failing as a 
regulator. If it is really good, and the blinds are drawn, I shall be 
unable to form any idea of what the outside weather is like. The 
good conditioner blocks the flow inwards of information about 
the weather. 

The same thesis applies to the higher regulations achieved by 
such activities as hunting for food, and earning one's daily bread. 
Thus while the unskilled hunter or earner, in difficult times, will 
starve and will force his liver and tissues (the essential variables) 
to extreme and perhaps unphysiological states, the skilled hunter 
or earner will go through the same difficult times with his liver 
and tissues never taken to extremes. In other words, his skill as a 
regulator is shown by the fact, among others, that it prevents 
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information about the times reaching the essential variables. In 
the same way, the skilled provider for a family may go through 
difficult times without his family realising that anything unusual 
has happened. The family of an unskilled provider would have 
discovered it. 

In general, then, an essential feature of the good regulator is 
that it blocks the flow of variety from disturbances to essential 
variables. 

1017. The blocking may take place in a variety of ways, which 
prove, however, on closer examination to be fundamentally the 
same. Two extreme forms will illustrate the range. 

One way of blocking the flow (from the source of disturbance 
D to the essential variable E) is to interpose something that acts as 
a simple passive block to the disturbances. Such is the tortoise's 
shell, which reduces a variety of impacts, blows, bites, etc. to a 
negligible disturbance of the sensitive tissues within. In the same 
class are the tree's bark, the seal's coat of blubber, and the human 
skull. 

At the other extreme from this static defence is the defence by 
skilled counter-action-the defence that gets information about 
the disturbance to come, prepares for its arrival, and then meets 
the disturbance, which may be complex and mobile, with a 
defence that is equally complex and mobile. This is the defence of 
the fencer, in some deadly duel, who wears no armour and who 
trusts to his skill in parrying. This is the defence used mostly by 
the higher organisms, who have developed a nervous system pre
cisely for the carrying out of this method. 

When considering this second form we should be careful to 
notice the part played by information and variety in the process. 
The fencer must watch his opponent closely, and he must gain 
information in all ways possible if he is to survive. For this pur
pose he is born with eyes, and for this purpose he learns how to 
use them. Nevertheless, the end result of this skill, if successful, 
is shown by his essential variables, such as his blood-volume, 
remaining within normal limits, much as if the duel had not 
occurred. Information flows freely to the non-essential variables, 
but the variety in the distinction "duel or no-duel" has been pre
vented from reaching the essential variables. 

Through the remaining chapters we shall be considering this 
type of active defence, asking such questions as: what principles 
must govern it? What mechanisms can achieve it? And, what is to 
be done when the regulation is very difficult? 
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Chapter 11 

REQUISITE VARIETY 

11/1. In the previous chapter we considered regulation from the 
biological point of view, taking it as something sufficiently well 
understood. In this chapter we shall examine the process of regu
lation itself, with the aim of finding out exactly what is involved 
and implied. In particular we shall develop ways of measuring the 
amount or degree of regulation achieved, and we shall show that 
this amount has an upper limit. 

11/2. The subject of regulation is very wide in its applications, 
covering as it does most of the activities in physiology, sociology, 
ecology, economics, and much of the activities in almost every 
branch of science and life. Further, the types of regulator that exist 
are almost bewildering in their variety. One way of treating the 
subject would be to deal seriatim with the various types, and chap
ter 12 will, in fact, indicate them. In this chapter, however, we 
shall be attempting to get at the core of the subject-to find what 
is common to all. 

What is common to all regulators, however, is not, at first sight 
much like any particular form. We will therefore start anew in the 
next section, making no explicit reference to what has gone 
before. Only after the new subject has been sufficiently developed 
will we beam to consider any relation it may have to regulation. 

11/3. Play and outcome. Let us therefore forget all about regula
tion and simply suppose that we are watching two players, R and 
D, who are engaged in a game. We shall follow the fortunes of R, 
who is attempting to score an a. The rules are as follows. They 
have before them Table 111311, which can be seen by both: 

Table 11/3/1 
R 

a f3 r 
1 b a c 

D 2 a c b 
3 c b a 
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D must play first, by selecting a number, and thus a particular row. 
R, knowing this number, then selects a Greek letter, and thus a 
particular column. The italic letter specified by the intersection of 
the row and column is the outcome. If it is an a, R wins; if not, R 
loses. 

Examination of the table soon shows that with this particular 
table R can win always. Whatever value D selects first, R can 
always select a Greek letter that will give the desired outcome. 
Thus if D selects 1, R selects ~; if D selects 2, R selects a; and so 
on. In fact, if R acts according to the transformation 

t I 
f3 

2 3 
a r 

then he can always force the outcome to be a. 
R 's position, with this particular table, is peculiarly favourable, 

for not only can R always force a as the outcome, but he can as 
readily force, if desired, b orcas the outcome. R has, in fact, com
plete control ofthe outcome. 

Ex. I: What transformation should R use to force c as outcome? 
Ex. 2: If both R 'sand D's values are integers, and the outcome E is also an inte

ger, given by 
E=R-2D, 

find an expression to giveR in terms of D when the desired outcome is 37. 
Ex. 3: A car's back wheels are skidding. Dis the variable "Side to which the tail 

is moving", with two values, Right and Left. R is the driver's action ''Direc
tion in which he turns the steering wheel" with two values, Right and Left. 
Form the 2 x 2 table and fill in the outcomes. 

Ex. 4: If R 'splay is determined by D's in accordance with the transformation 

t I 2 3 
f3 a y 

and many games are observed, what will be the variety in the many outcomes0 
Ex. 5: Has R complete control of the outcome if the table is triunique? 

11/4. The Table used above is, of course, peculiarly favourable to 
R. Other Tables are, however, possible. Thus, suppose D and R, 
playing on the same rules, are now given Table 11/4/1 in which D 
now has a choice of five, and R a choice of four moves. 

If a is the target, R can always win. In fact, if D selects 3, R has 
several ways of winning. As every row has at least one a, R can 
always force the appearance of a as the outcome. On the other 
hand, if the target is b he cannot always win. For if D selects 3, 
there is no move by R that will give bas the outcome. And if the 
target is c, R is quite helpless, forD wins always. 
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It will be seen that different arrangements within the table, and 
different numbers of states available to D and R, can give rise to 
a variety of situations from the point ofview of R. 

Table 11/4/1 

R 
a f3 r 8 

1 b d a a 
2 a d a d 

D 3 d a a a 
4 d b a b 
5 d a b d 

Ex. 1: With Table 11/4/ I, can R always win if the target is d? 

Ex. 2: (Continued.) What transformation should Ruse? 
Ex. 3: (Continued.) If a is the target and D, for some reason, never plays 5, how 

can R simplify his method of play? 
Ex. 4: A guest is coming to dinner, but the butler does not know who. He knows 

only that it may be Mr. A, who drinks only sherry or wine, Mrs. B, who 
drinks only gin or brandy, or Mr. C, who drinks only red wine, brandy or 
sherry. In the cellar he finds he has only whisky, gin, and sherry. Can he find 
something acceptable to the guest, whoever comes ? 

11/5. Can any general statement be made about R 's modes of play 
and prospects of success ? 

If full generality is allowed in the Table, the possibilities are so 
many, arbitrary and complicated that little can be said. There is 
one type, however, that allows a precise statement and is at the 
same time sufficiently general to be of interest. (It is also funda
mental in the theory of regulation.) 

From all possible tables let us eliminate those that make R 's 
game too easy to be of interest. Ex. 11/4/3 showed that if a column 
contains repetitions, R 's play need not be discriminating; that is, 
R need not change his move with each change of D's move. Let 
us consider, then, only those tables in which no column contains 
a repeated outcome. When this is so R must select his move on full 
knowledge of D's move; i.e. any change of D's move must require 
a change on R 's part. (Nothing is assumed here about how the out
comes in one column are related to those in another, so these rela
tions are unrestricted.) Such a Table is 11/5/1. Now, some target 
being given, let R specify what his move will be for each move by 
D. What is essential is that, win or lose, he must specify one and 
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Table 11/5/1 

R 
a f3 y 

I f f k 
2 k e f 
3 m k a 
4 b b b 

D 5 c q c 
6 h h m 
7 j d d 
8 a p j 
9 l n h 

only one move in response to each possible move of D. His spec
ification, or "strategy" as it might be called, might appear: 

If D selects I, I shall select y 
, 2, , a 
"3,, {3 

9, " a 
He is, of course, specifying a transformation (which must be sin
glevalued, as R may not make two moves simultaneously): 

t 1 
y 

2 

a 
3 9 

f3 ... a 

This transformation uniquely specifies a set of outcomes
those that will actually occur if D, over a sequence of plays, 
includes every possible move at least once. For 1 andy give the 
outcome k, and so on, leading to the transformation: 

t (l,y) (2,a) (3,{3) .. . (9,a) 
k k k ... l 

It can now be stated that the variety in this set of outcomes cannot 
be less than 

i.e., in this case, 9/3. 

D's variety 
R's variety 

It is easily proved. Suppose R marks one element in each row 
and concentrates simply on keeping the variety of the marked ele-
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ments as small as possible (ignoring for the moment any idea of a 
target). He marks an element in the first row. In the second row he 
must change to a new column if he is not to increase the variety 
by adding a new, different, element; for in the initially selected 
column the elements are all different, by hypothesis. To keep the 
variety down to one element he must change to a new column at 
each row. (This is the best he can do; it may be that change from 
column to column is not sufficient to keep the variety down to one 
element, but this is irrelevant, for we are interested only in what 
is the least possible variety, assuming that everything falls as 
favourably as possible). So if R has n moves available (three in the 
example), at the n-th row all the columns are used, so one of the 
columns must be used again for the next row, and a new outcome 
must be allowed into the set of outcomes. Thus in Table 11/5/l, 
selection of the k's in the first three rows will enable the variety 
to be kept to one element, but at the fourth row a second element 
must be allowed into the set of outcomes. 

In general: If no two elements in the same column are equal, 
and if a set of outcomes is selected by R, one from each row, and 
if the table has r rows and c columns, then the variety in the 
selected set of outcomes cannot be fewer than ric. 

THE LAW OF REQUISITE VARIETY 

11/6. We can now look at this game (still with the restriction that 
no element may be repeated in a column) from a slightly different 
point of view. If R, S move is unvarying, so that he produces the 
same move, whatever D, S move, then the variety in the outcomes 
will be as large as the variety in D'S moves. D now is, as it were, 
exerting full control over the outcomes. 

If next R uses, or has available, two moves, then the variety of 
the outcomes can be reduced to a half (but not lower). If R has 
three moves, it can be reduced to a third (but not lower); and so 
on. Thus if the variety in the outcomes is to be reduced to some 
assigned number, or assigned fraction of D, Svariety, R, Svariety 
must be increased to at least the appropriate minimum. Only vari
ety in R, S moves can force down the variety in the outcomes. 

11/7. If the varieties are measured logarithmically (as is almost 
always convenient), and if the same conditions hold, then the the
orem takes a very simple form. Let VD be the variety of D, VR that 
of R, and V 0 that of the outcome (all measured logarithmically). 
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Then the previous section has proved that V0 cannot be less, 
numerically, than the value of Vn- V1i. Thus V0 's minimum is Vn 
- VR. 

If Vn is given and fixed, Vn- VR can be lessened only by a cor
responding increase in V1i. Thus the variety in the outcomes, if 
minimal, can be decreased further only by a corresponding 
increase in that ofR. (A more general statement is given in S.ll/9.) 

This is the law of Requisite Variety. To put it more pictur
esquely: only variety in R can force down the variety due to D; 
variety can destroy variety. 

This thesis is so fundamental in the general theory of regulation 
that I shall give some further illustrations and proofs before turn
ing to consider its actual application. 

1118. (This section can be omitted at first reading.) The law is of 
very general applicability, and by no means just a trivial outcome 
of the tabular form. To show that this is so, what is essentially the 
same theorem will be proved in the case when the variety is spread 
out in time and the fluctuation incessant-the case specially con
sidered by Shannon. (The notation and concepts in this section are 
those of Shannon's book.) 

Let D, R, and E be three variables, such that each is an informa
tion source, though "source" here is not to imply that they are act
ing independently. Without any regard for how they are related 
causally, a variety of entropies can be calculated, or measured 
empirically. There is H(D,R,E), the entropy of the vector that has 
the three as components; there is Hn (E), the uncertainty in E 
when D, S state is known; there is H~:JJ (R), the uncertainty in R 
when both E and Dare known; and so on. 

The condition introduced in S.ll/5 (that no element shall occur 
twice in a column) here corresponds to the condition that if R is 
fixed, or given, the entropy of E (corresponding to that of the out
come) is not to be less than that of D, i.e. 

HR (E) 2:: HR (D) 

Now whatever the causal or other relations between D, Rand E, 
algebraic necessity requires that their entropies must be related so 
that 

H(D) + Hn (R) = H(R) + HR (D) 

for each side of the equation equals H(R,D). Substitute HR(E) for 
HR(D), and we get 

H(D) + Hn (R) :S H(R) + HR (E) 
:SH(R,E). 
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But always, by algebraic necessity, 

H(R, E) ~ H(R) + H(E) 

so H(D) + Hn (R) ~H(R) + H11 (E) 
i.e. H(E) ?_H(D) + Hn (E) -H(R). 

Thus the entropy of theE's has a certain minimum. If this mini
mum is to be affected by a relation between the D- and R-sources, 
it can be made least when Hr/R) = 0, i.e. when R is a determinate 
function of D. When this is so, then H(E) 's minimum is H(D)
H(R), a deduction similar to that of the previous section. It says 
simply that the minimal value of E 's entropy can be forced down 
below that of D only by an equal increase in that of R. 

11/9. The theorems just established can easily be modified to give 
a worth-while extension. 

Consider the case when, even when R does nothing (i.e. pro
duces the same move whatever D does) the variety of outcome is 
less than that of D. This is the case in Table 11/4/1. Thus if R gives 
the reply a to all D's moves, then the outcomes are a, b or d- a 
variety of three, less than D's variety of five. To get a manageable 
calculation, suppose that within each column each element is now 
repeated k times (instead of the "once only" of S.ll /5). The same 
argument as before, modified in that kn rows may provide only 
one outcome, leads to the theorem that 

V0 ?.. Vn -log k-log ~~, 

in which the varieties are measured logarithmically. 
An exactly similar modification may be made to the theorem in 

terms of entropies, by supposing, not as in S.11/8 that 

HR (E) ?.. HR (D), but that 
HR (E) ?_HR (D) -K. 

H(E) 's minimum then becomes 

H(D) - K- H(R), 

with a similar interpretation. 

11/10. The law states that certain events are impossible. It is 
important that we should be clear as to the origin of the impossi
bility. Thus, what has the statement to fear from experiment? 

It has nothing to do with the properties of matter. So if the law 
is stated in the form "No machine can ... ", it is not to be over-
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thrown by the invention of some new device or some new elec
tronic circuit, or the discovery of some new element. It does not 
even have anything to do with the properties of the machine in the 
general sense of Chapter 4; for it comes from the Table, such as 
that of S.ll /4; this Table says simply that certain D-R combina
tions lead to certain outcomes, but is quite independent of what
ever it is that determines the outcome. Experiments can only 
provide such tables. 

The theorem is primarily a statement about possible arrange
ments in a rectangular table. It says that certain types of arrange
ment cannot be made. It is thus no more dependent on special 
properties of machines than is, say, the "theorem" that four 
objects can be arranged to form a square while three can not. The 
law therefore owes nothing to experiment. 

11/11. Regulation again. We can now take up again the subject of 
regulation, ignored since the beginning of this chapter, for the law 
of Requisite Variety enables us to apply a measure to regulation. 
1 et us go back and reconsider what is meant, essentially, by "reg
ulation". 

There is first a set of disturbances D, that start in the world out
side the organism, often far from it, and that threaten, if the regu
lator R does nothing, to drive the essential variables E outside 
their proper range of values. The values of E correspond to the 
"outcomes" of the previous sections. Of all these E-values only a 
few (TJ) are compatible with the organism's life, or are unobjec
tionable, so that the regulator R, to be successful, must take its 
value in a way so related to that of D that the outcome is, if possi
ble, always within the acceptable set 17, i.e. within physiological 
limits. Regulation is thus related fundamentally to the game of 
S.ll/4. Let us trace the relation in more detail. 

The Table Tis first assumed to be given. It is the hard external 
world, or those internal matters that the would-be regulator has to 
take for granted. Now starts a process. D takes an arbitrary value, 
R takes some value determined by D's value, the Table deter
mines an outcome, and this either is or is not in TJ. Usually the 
process is repeated, as when a water-bath deals, during the day, 
with various disturbances. Then another value is taken by D, 
another by R, another outcome occurs, and this also may be either 
in 11 or not. And so on. If R is a well-made regulator--one that 
works successfully-then R is such a transformation of D that all 
the outcomes fall within TJ. In this case Rand T together are act
ing as the barrier F(S.l0/5.) 
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We can now show these relations by the diagram of immediate 
effects: 

The arrows represent actual channels of communication. For the 
variety in D determines the variety in R, and that in Tis deter
mined by that in both D and R. If R and T are in fact actual 
machines, then R has an input from D, and T has two inputs. 

(When Rand Tare embodied in actual machines, care must be 
taken that we are clear about what we are referring to. If some 
machine is providing the basis for T, it will have (by S.4/1) a set 
of states that occur step by step. These states, and these steps, are 
essentially independent of the discrete steps that we have consid
ered to be taken by D, R, and Tin this chapter. Thus, T gives the 
outcome, and any particular outcome may be compared with 
another, as unit with unit. Each individual outcome may, how
ever, in another context, be analysed more finely. Thus a thirsty 
organism may follow trajectory I and get relief, or trajectory 2 
and die of thirst. For some purposes the two outcomes can be 
treated as units, particularly if they are to be contrasted. If how
ever we want to investigate the behaviour in more detail, we can 
regard trajectory 1 as composed of a sequence of states, separated 
by steps in time that are of quite a different order of size from 
those between successive regulatory acts to successive distur
bances.) 

We can now interpret the general phenomenon of regulation in 
terms of communication. If R does nothing, i.e. keeps to one 
value, then the variety in D threatens to go through T to E, con
trary to what is wanted. It may happen that T, without change by 
R, will block some of the variety (S.ll/9), and occasionally this 
blocking may give sufficient constancy at E for survival. More 
commonly, a further suppression at E is necessary; it can be 
achieved, as we saw in S.ll/6, only by further variety at R. 

We can now select a portion of the diagram, and focus attention 
on R as a transmitter: 
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The law of Requisite Variety says that R 's capacity as a regulator 
cannot exceed R 's capacity as a channel of communication. 

In the form just given, the law of Requisite Variety can be 
shown in exact relation to Shannon's Theorem 10, which says that 
if noise appears in a message, the amount of noise that can be 
removed by a correction channel is limited to the amount of infor
mation that can be carried by that channel. 

Thus, his "noise" corresponds to our "disturbance", his "correc
tion channel" to our "regulator R", and his "message of entropy 
H" becomes, in our case, a message of entropy zero, for it is con
stancy that is to be "transmitted". Thus the use of a regulator to 
achieve homeostasis and the use of a correction channel to sup
press noise are homologous. 

Ex. 1: A certain insect has an optic nerve of a hundred fibres, each ofwhich can 
carry twenty bits per second; is this sufficient to enable it to defend itself 
against ten distinct dangers, each of which may, or may not, independently, 
be present in each second? 

Ex. 2: A ship's telegraph from bridge to engine-room can determine one of nine 
speeds not oftener than one signal in five seconds, and the wheel can deter
mine one of fifty rudder-positions in each second. Since experience has 
shown that this means of control is normally sufficient for full regulation, 
estimate a normal upper limit for the disturbances (gusts, traffic, shoals, etc.) 
that threaten the ship's safety. 

Ex. 3: A general is opposed by an army of ten divisions, each of which may 
manoeuvre with a variety of 106 bits in each day. His intelligence comes 
through I 0 signallers, each of whom can transmit 60 letters per minute for 8 
hours in each day, in a code that transmits 2 bits per letter. Is his intelli
gence-channel sufficient for him to be able to achieve complete regulation? 

Ex. 4: (Continued.) The general can dictate orders at 500 bits/minute for 12 
hours/day. If his Intelligence were complete, would this verbal channel be 
sufficient for complete regulation ? 

11/12. The diagram of immediate effects given in the previous 
section is clearly related to the formulation for "directive correla
tion" given by Sommerhoff, who, in his Analytical Biology, uses 
the diagram 

Rt1 
,71 \.! 

CV0 Gtz 

\.! ,71 
Et1 

to tl tz 
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Tfl am not misinterpreting him, his concepts and those used here 
are equivalent thus: 

Coenetic variable (CV0 ) H Disturbance (D) 
Response (Rt1) H Response (R) 

Environmental circumstances (Et1) H Table (T) 
Subsequent occurrence (Gt2) H Outcome (E) 

A reading of his book may thus help to extend much of the theory 
given in this Part, for he discusses the subject extensively. 

11/13. The law now enables us to see the relations existing 
between the various types of variety and information that affect 
the living organism. 

A species continues to exist (S.l0/14) primarily because its 
members can block the flow of variety (thought of as disturbance) 
to the gene-pattern (S.l 0/6), and this blockage is the species' most 
fundamental need. Natural selection has shown the advantage to 
be gained by taking a large amount of variety (as information) 
partly into the system (so that it does not reach the gene-pattern) 
and then using this information so that the flow via R blocks the 
flow through the environment T. 

This point of view enables us to resolve what might at first seem 
a paradox-that the higher organisms have sensitive skins, 
responsive nervous systems, and often an instinct that impels 
them, in play or curiosity, to bring more variety to the system than 
is immediately necessary. Would not their chance of survival be 
improved by an avoidance of this variety? 

The discussion in this chapter has shown that variety (whether 
information or disturbance) comes to the organism in two forms. 
There is that which threatens the survival of the gene-pattern-the 
direct transmission by T from D to E. This part must be blocked 
at all costs. And there is that which, while it may threaten the 
gene-pattern, can be transformed (or re-coded) through the regu
lator R and used to block the effect of the remainder (in T). This 
information is useful, and should (if the regulator can be pro
vided) be made as large as possible; for, by the law of Requisite 
Variety, the amount of disturbance that reaches the gene-pattern 
can be diminished only by the amount of information so transmit
ted. That is the importance of the law in biology. 

It is also of importance to us as we make our way towards the 
last chapter. In its elementary forms the law is intuitively obvious 
and hardly deserving statement. If, for instance, a press photogra-
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pher would deal with twenty subjects that are (for exposure and 
distance) distinct, then his camera must obviously be capable of 
at least twenty distinct settings if all the negatives are to be 
brought to a uniform density and sharpness. Where the law, in its 
quantitative form, develops its power is when we come to con
sider the system in which these matters are not so obvious, and 
particularly when it is very large. Thus, by how much can a dicta
tor control a country? It is commonly said that Hitler's control 
over Germany was total. So far as his power of regulation (in the 
sense of S.l 0/6) was concerned, the law says that his control 
amounted to just 1 man-power, and no more. (Whether this state
ment is true must be tested by the future; its chief virtue now is 
that it is exact and uncompromising.) Thus the law, though trite in 
the simple cases, can give real guidance in those cases that are 
much too complex to be handled by unaided intuition. 

CONTROL 

11/14. The formulations given in this chapter have already sug
gested that regulation and control are intimately related. Thus, in 
S.ll/3, Table 11/3/1 enables R not only to achieve a as outcome 
in spite of all D's variations; but equally to achieve b or c at will. 

We can look at the situation in another way. Suppose the deci
sion of what outcome is to be the target is made by some control
ler, C, whom R must obey. C's decision will affect R 's choice of 
a, ~ or y; so the diagram of immediate effects is 

Thus the whole represents a system with two independent inputs, 
CandD. 

Suppose now that R is a perfect regulator. If C sets a as the tar
get, then (through R 's agency) E will take the value a, whatever 
valueD may take. Similarly, ifC sets bas target, b will appear as 
outcome whatever value D may take. And so on. And if C sets a 
particular sequence-a, b, a. c, c, a, say-as sequential or com
pound target, then that sequence will be produced, regardless of 
D's values during the sequence. (It is assumed for convenience 
that the components move in step.) Thus the fact that R is a perfect 
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regulator gives C complete control over the output, in spite of the 
entrance of disturbing effects by way of D. Thus, perfect regula
tion of the outcome by R makes possible a complete control over 
the outcome by C. 

We can see the same facts from yet another point of view. If an 
attempt at control, by C over E: 

is disturbed or made noisy by another, independent, input D, so 
that the connexions are 

then a suitable regulator R, taking information from both C and D, 
and interposed between C and T: 

may be able to form, with T, a compound channel toE that trans
mits fully from C while transmitting nothing from D. 

The achievement of control may thus depend necessarily on the 
achievement of regulation. The two are thus intimately related. 

Ex. 1: From Table 31/3/1 form the set of transformations, with cas parameter, 
that must be used by R if C is to have complete control over the outcome. 
(Hint: What are the operands?) 

Ex. 2: If, in the last diagram of this section, C wants to transmit toE at 20 bits/ 
second, and a source D is providing noise at 5 bits/second, and Tis such 
that if R is constant, E will vary at 2 bits/second, how much capacity must 
the channel from D to R have (at least) if C s control over E is to be 
complete? 

Ex. 3: (Continued.) How much capacity (at least) is necessary along the channel 
from C toR? 

Ex. 4: (Continued.) How much along that from R toT? 
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11/15. In our treatment of regulation the emphasis has fallen on its 
property of reducing the variety in the outcome; without regula
tion the variety is large-with regulation it is small. The limit of 
this reduction is the regulation that holds the outcome rigorously 
constant. This point of view is undoubtedly valid, but at first it 
may seem to contrast sharply with the naive view that living 
organisms are, in general, anything but immobile. A few words, 
in addition to what was said in S.ll/13, may be useful. 

It should be appreciated that the distinction between "constant" 
and "varying" often depends on the exact definition of what is 
being referred to. Thus if a searchlight follows an aircraft accu
rately we may notice either that the searchlight moved through a 
great range of angles (angles in relation to the earth) or that the 
angle it made with the aircraft remained constant at zero. Obvi
ously both points of view are valid; there is no real contradiction 
in this example between "great range" and "constant", for they 
refer to different variables. 

Again, the driver who steers a car accurately from one town to 
another along a winding lane can be regarded either as one who 
has caused the steering wheel to show much activity and change 
or as one who, throughout the trip, has kept the distance between 
car and verge almost constant. 

Many of the activities of living organisms permit this double 
aspect. On the one hand the observer can notice the great deal of 
actual movement and change that occurs, and on the other hand he 
can observe that throughout these activities, so far as they are co
ordinated or homeostatic, there are invariants and constancies that 
show the degree of regulation that is being achieved. 

Many variations are possible on the same theme. Thus if varia
ble xis always doing just the same as variable y, then the quantity 
x- y is constant at zero. So ify's values are given by some outside 
factor, any regulator that acts on x so as to keep x- y constant at 
zero is in fact forcing x to vary, copying y. Similarly, "making x 
do the opposite toy" corresponds to "keeping x + y at some con
stant value". And "make the variable w change so that it is always 
just twice as large as v's (fluctuating) rate of change" corresponds 
to "keep the quantity w- 2dv/dt constant". 

It is a great convenience in exposition and in the processes of 
general theory to be able to treat all "targets" as if they were of the 
form "keep the outcome constant at a". The reader must, however, 
not be misled into thinking that the theory beat' only of immobil
ity; he must accustom himself to interchanging the corresponding 
concepts freely. 
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SOME VARIATIONS 

11/16. In S.ll/4 the essential facts implied by regulation were 
shown as a simple rectangular table, as if it were a game between 
two players D and R. The reader may feel that this formulation is 
much too simple and that there are well known regulations that it 
is insufficient to represent. The formulation, however, is really 
much more general than it seems, and in the remaining sections of 
this chapter we shall examine various complications that prove, 
on closer examination, to be really included in the basic formula
tion of S.ll/4. 

11/17. Compound disturbance. The basic formulation of S.ll/4 
included only one source of disturbance D, and thus seems, at first 
sight, not to include all those cases, innumerable in the biological 
world, in which the regulation has to be conducted against several 
disturbances coming simultaneously by several channels. Thus, a 
cyclist often has to deal both with obstructions due to traffic and 
with disequilibrations due to gusts. 

In fact, however, this case is included; for nothing in this chap
ter excludes the possibility that D may be a vector, with any 
number of components. A vectorial Dis thus able to represent all 
such compound disturbances within the basic formulation. 

11/18. Noise. A related case occurs when Tis "noisy"-when T 
has an extra input that is affected by some disturbance that inter
feres with it. This might be the case if T were an electrical 
machine, somewhat disturbed by variations in the mains' voltage. 
At first sight this case seems to be not represented in the basic for
mulation. 

It must be appreciated that D, T, E, etc. were defined in S.ll/3 
in purely functional form. Thus "D" is "that which disturbs". 
Given any real system some care may b necessary in deciding 
what corresponds to D, what to T, and so on. Further, a boundary 
drawn provisionally between D and T (and the other boundaries) 
may, on second thoughts, require moving. Thus one set of bound
aries on the real system may give a system that purports to be of 
D, T, etc. yet does not agree with the basic formulation of S.ll/4. 
Then it may be found that a shifting of the boundaries, to give a 
new D. T, etc., gives a set that does agree with the formulation. 

If a preliminary placing of the boundaries shows that this (pro
visional) Tis noisy, then the boundaries should be re-drawn so as 
to get T' s input of noise (S.9/19) included as a component in D. D 
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is now "that which disturbs", and T has no third input, so the for
mulation agrees with that of S.ll/4. 

There is, of course, no suggestion here that the noise, as a dis
turbance, can be allowed for magically by merely thinking differ
ently about it. The suggestion is that if we start again from the 
beginning and re-defineD and Tthen some new transformation of 
D may be able to restore regulation. The new transformation will, 
of course, have to be more complex than the old, forD will have 
more components. 

11/19. Initial states. A related case occurs when Tis some machine 
that shows its behaviour by a trajectory, with the outcome E 
depending on the properties of Ts trajectory. The outcomes will 
then usually be affected by which of Ts states is the initial one. 
How does Ts initial state come into the basic formulationofS.ll/4? 

If the initial state can be controlled, so that the trajectory can be 
started always from some standardised state, then no difficulty 
arises. (In this connexion the method of S.7 /25 may be useful.) It 
may however happen, especially if the system is very large, that 
Ts initial state cannot be standardised. Does the basic formula
tion include this case? 

It does; forD, as a vector, can be re-defined to include Ts initial 
state. Then the variety brought toE by the variety in Ts initial 
state is allotted its proper place in the formulation. 

11/20. Compound target. It may happen that the acceptable states 
1( atE may have more than one condition. Thus of a thermostat it 
might be demanded that 

(i) it shall usually stay between 36° and 37°C; 
(ii) if displaced by± 1 oo it shall return to the allowed range 

within one minute. 

This difficulty can be dealt with by the same method as in S.ll/ 
17, by recognising that E may be a vector, with more than one 
component, and that what is acceptable (1() may be given in the 
form of separate specifications for each component. 

Thus, by allowing E to become a vector, the basic formulation 
of S. 1114 can be made to include all cases in which the target is 
complex, or conditional, or qualified. 

11/21. Internal complexities. As a last example, showing how 
comprehensive the basic formulation really is, consider the case 
in which the major problem seems to be not so much a regulation 
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as an interaction between several regulations. Thus a signalman 
may have to handle several trains coming to his section simulta
neously. To handle any one by itself would be straightforward, 
but here the problem is the control of them as a complex whole 
pattern. 

This case is in fact still covered by the basic formulation. For 
nothing in that formulation prevents the quantities or states or ele
ments in D, R, T, or E from being made of parts, and the parts 
interrelated. The fact that "D" is a single letter in no way implies 
that what it represents must be internally simple or unitary. 

The signalman's "disturbance" D is the particular set of trains 
arriving in some particular pattern over space and time. Other 
arrangements would provide other values for D, which must, of 
course, be a vector. The outcomes E will be various complex pat
terns of trains moving in relation to one another and moving away 
from his section. The acceptable set 11 will certainly include a com
ponent "no collision" and will probably include others as well. His 
responses R will include a variety of patterns of movements of sig
nals and points. Tis what is given-the basic matters of geography, 
mechanics, signalling techniques, etc., that lead determinately from 
the situation that has arisen and his reaction pattern to outcome. 

It will be seen therefore that the basic formulation is capable, in 
principle, of including cases of any degree of internal complexity. 
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Chapter 

THE ERROR-CONTROLLED 
REGULATOR 

12 

12/1. In the previous chapter we studied the nature of regulation, 
and showed that certain relations and laws must hold if regulation 
is to be achieved. There we assumed that regulation was achieved, 
and then studied what was necessary. This point of view, however, 
though useful, hardly corresponds with that commonly used in 
practice. Let us change to a new point of view. 

In practice, the question of regulation usually arises in this way: 
The essential variables E are given, and also given is the set of 
states 11 in which they must be maintained if the organism is to 
survive (or the industrial plant to run satisfactorily). These two 
must be given before all else. Before any regulation can be under
taken or even discussed, we must know what is important and 
what is wanted. Any particular species has its requirements 
given-the cat must keep itself dry, the fish must keep itself wet. 
A servo-mechanism has its aim given by other considerations
one must keep an incubating room hot, another must keep a refrig
erating room cold. Throughout this book it is assumed that outside 
considerations have already determined what is to be the goal, i.e. 
what are the acceptable states TJ. Our concern, within the book, is 
solely with the problem of how to achieve the goal in spite of dis
turbances and difficulties. 

The disturbances D threaten to drive E outside the set TJ. If D 
acts through some dynamic system (an environment) T, then the 
diagram of immediate effects is initially 

~~[!]~[!] 
The organism (or whoever is interested in E), however, has some 
power of forming another dynamic system R (e.g. a brain or a ser
vomechanism) which can be coupled to T and which, if properly 
made, will form with T a whole, F, so thatthe diagram of immediate 
effects becomes 
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and such that F blocks the flow of variety from D to E, so that E 
stays within 11· 

Tis usually given. It is the environment which the organism is 
facing together with those parts of the organism that have to be 
taken as given in the regulation. It cannot just be abolished, but 
can usually be manipulated. The problem of regulation is then, in 
general: 

Given E, 11, T, and D, to form the mechanism R so that Rand 
T, coupled, act to keep E within 11· 

From now to the end of the book we shall be studying how var
ious types of data (E, 11. T, and D) can specify the form of 
machine with input (R) that will give regulation. We want to 
deduce the form of R. 

Were the situation always as simple as it was in Table 111311, 
the subject would soon be exhausted. As it is, many deviations 
from that form are possible, so we shall proceed to examine vari
ous deviations, as they put various difficulties in the way of the 
design or specification of the regulator R. 

We can now assume, in discussing some particular regulation, 
that full use has been made of the possibilities of redefining (S.Il/ 
16) so that the formulation is either like that ofS.Il/3, which gave 
perfect regulation and control, or like those in S.1114, in which 
such perfection was impossible. The remainder of the book will 
be concerned essentially with those cases in which perfect regula
tion is not possible but in which we wish the regulation to be as 
good as is possible in the conditions given. 

12/2. Sensory and motor restriction. A simple introduction to the 
real difficulties is that given when R 's capacity, as a channel for 
transmitting variety or information from D to T, becomes insuffi
cient, according to the law of Requisite Variety, to reduce the vari
ety inEtothat in 11· When this happens, the regulation is necessarily 
imperfect. 

Examples of the phenomenon are myriad. First are all the cases 
of sensory restriction, of deafness, of the driver who cannot see 
clearly through a rain-obscured windscreen. There are the organ
isms that cannot see ultra-violet light, and the tabetic who cannot 
feel where his feet are. These are restrictions in the channel from 
DtoR. 

Then there are the restrictions in the channel from R toT, those 
on the effector side of R. There is the man who has lost an arm, 
the insect that cannot fly, the salivary gland that cannot secrete, 
and the rudder that is stuck. 
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A similar restriction of R 's capacity may occur in those cases 
where R 's effect on T is vectorial, Le. effected through more than 
one channel or component to T, and some diminution has 
occurred in the number ofT's parameters accessible toR. (Com
pare S.7/12.) Thus a failure at one of the controls on the dashboard 
may impair the driver's ability to keep the car running well. 

The case when R cannot receive full information about T's ini
tial state (discussed in S.ll/19) is really included in the cases 
mentioned above. Such a difficulty occurs to a railway signalman 
in a fog. He is well informed that a disturbance "fog" has arrived, 
but he often has difficulty in ascertaining the present state of the 
system he is controlling, i.e. the present positions of the trains in 
his sector. With this restriction in the flow of information from T 
toR goes the difficulty, or even impossibility, of maintaining full 
regulation. 

12/3. The basic formulation of S.ll/4 assumed that the process of 
regulation went through its successive stages in the following order: 

(1) a particular disturbance threatens at D; 
(2) it acts on R, which transforms it to a response; 
(3) the two values, of D and R, act on T simultaneously to pro

duce T's outcome; 
( 4) the outcome is a state in E, or affects E. 

Thus (3) supposes that if R is an actual material system, it performs 
all its work before T starts to move. We assumed, in other words 
that the regulator R moved at a higher order of speed than T. 

This sequence does actually occur in many cases. When the cat 
approaches, the mouse may react so as to get to its hole before the 
eat's claws actually strike. We say in general that the organism 
has reacted to the threat (at D) rather than to the disaster itself(at 
E), and has thus forestalled the disaster. The formulation is thus 
properly representative of many important regulations. 

On the other hand, there are many important cases in which this 
anticipation is not possible-in which R 's action cannot be com
pleted before the outcome (at T) starts to be determined. (An 
example is given in the next section.) In such cases the regulation 
envisaged in S.11/3 is impossible. What then is to be done? 

One method, of course, is to speed up the transmission of infor
mation from D to R; and many regulating systems have various 
devices specially to this end. Primitive nerve fibres develop mye
lin sheaths, so that the passage to the brain may be faster. Some 
organisms develop a sense of smell, so that the appropriate 
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response may be prepared in time for the actual bodily encounter. 
And economic systems send messages by cable rather than by 
messenger so that the arrival in port of a ship with a perishable 
cargo can be prepared for. 

Sometimes, however, the available resources do not include a 
speeding-up of the transmission through R; R 's reaction cannot be 
got to T before the outcome commences. In that case, the best that 
can be done is that the imperfect regulation should at least be as 
good as it can be made in the circumstances. The succeeding sec
tions will discuss how this can be done. 

12/4. Regulation by error. A well-known regulator that cannot react 
directly to the original disturbance Dis the thermostat controlled 
water- bath, which is unable to say "l see someone coming with a 
cold flask that is to be immersed in me-T must act now". On the 
contrary, the regulator gets no information about the disturbance 
until the temperature of the water (E) actually begins to drop. And 
the same limitation applies to the other possible disturbances, such 
as the approach of a patch of sunlight that will warm it, or the leav
ing open of a door that will bring a draught to cool it. 

The same limitation holds over many important regulators. 
There is, for instance, a mechanism that helps to keep constant the 
oxygen supply to the tissues: any long-continued lack of oxygen 
causes eventually an increase in the number of red corpuscles 
contained in the blood. So people with certain types of heart dis
ease, and those living at high altitudes, where the air is thin, tend 
to develop such an increase. This regulation draws its information 
from the harmful effect (the lack of oxygen) itself, not from the 
cause (D) of the heart disease, or from the decision to live at a 
higher altitude. 

From the point of view of communication, the new phenomena 
are easily related to those ofthe old. The difference is simply that 
now the information from D toR (which must pass if the regulator 
Risto play any useful part whatever) comes through T. Instead of 

we have 

R is thus getting its information about D by way ofT: 

222 



fHE ERROR-CONTROLLED REGULATOR 

and the information available for regulatory purposes is whatever 
survives the coding imposed by its passage through T (S.8/5). 

Sometimes the information available toR is forced to take an 
even longer route, so that R is affected only by the actual effect at 
E. The diagram of immediate effects is then 

and we have the basic form of the simple "error-controlled servo
mechanism" or "closed loop regulator", with its well-known feed
back from E toR. The reader should appreciate that this form differs 
from that of the basic formulation (S.ll/4) only in that the informa
tion about D gets to R by the longer route 

Again, the information available toR is only such as survives the 
transmission through T and E: 

This form is of the greatest importance and widest applicability. 
The remainder of the book will be devoted to it. (The other cases 
are essentially simpler and do not need so much consideration.) 

12/5. A fundamental property of the error-controlled regulator is 
that it cannot be peifect in the sense of S.ll/3. 

Suppose we attempt to formulate the error-controlled system by 
the method used in S.ll/3 and 4. We take a table of double entry, 
with D and R determining an outcome in E. Each column has a 
variety equal to that of D. What is new is that the rules must be 
modified. Whereas previously D made a selection (a particular 
disturbance), then R, and thus E was determined, the play now is 
that after D's initial selection, R must take a value that is a deter
minate function of the outcome E (for R is error-controlled). It is 
easily shown that with these conditions E 's variety will be as 
large as D's-i.e. R can achieve no regulation, no matter how R is 
constructed (i.e. no matter what transformation is used to turn E 's 
value to an R-value). 

If the formal proof is not required, a simpler line of reasoning 
can show why this must be so. As we saw, R gets its information 
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through T and E. Suppose R is somehow regulating successfully; 
then this would imply that the variety at E is reduced below that 
of D-perhaps even reduced to zero. This very reduction makes 
the channel 

to have a lessened capacity; if E should be held quite constant then 
the channel is quite blocked. So the more successful R is in keeping 
E constant, the more does R block the channel by which it is receiv
ing its necessary information. Clearly, any success by R can at best 
be partial. 

12/6. Fortunately, in many cases complete regulation is not neces
sary. So far, we have rather assumed that the states of the essential 
variables E were sharply divided into "normal" ( 17) and "lethal", so 
occurrence of the "undesirable" states was wholly incompatible 
with regulation. It often happens, however, that the systems show 
continuity, so that the states of the essential variables lie along a 
scale of undesirability. Thus a land animal can pass through many 
degrees of dehydration before dying ofthirst; and a suitable reversal 
from halfway along the scale may justly be called "regulatory" if it 
saves the animal's life, though it may not have saved the animal 
from discomfort. 

Thus the presence of continuity makes possible a regulation 
that, though not perfect, is of the greatest practical importance. 
Small errors are allowed to occur; then, by giving their informa
tion to R, they make possible a regulation against great errors. 
This is the basic theory, in terms of communication, of the simple 
feedback regulator. 

1217. The reader may feel that excessive attention has just been 
given to the error-controlled regulator, in that we have stated with 
care what is already well known. The accuracy of statement is, 
however, probably advisable, as we are going now to extend the 
subject of the error- controlled regulator over a range much wider 
than usual. 

This type of regulator is already well known when embodied in 
a determinate machine. Then it gives the servo-mechanism, the 
thermostat, the homeostatic mechanism in physiology, and so on. 
It can, however, be embodied in a non-determinate machine, and 
it then gives rise to a class of phenomena not yet commonly occur-
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ring in industrial machinery but of the commonest occurrence and 
highest importance in biological systems. The subject is returned 
to in S.l2/ll. Meanwhile we must turn aside to see what is 
involved in this idea of a "non-determinate" machine. 

THE MARKOVIAN MACHINE 

12/8. We are now going to consider a class of machine more general 
than that considered in Parts 1 and 11. (Logically, the subject should 
have been considered earlier, but so much of those Parts was con
cerned with the determinate machine (i.e. one whose transforma
tions are single- valued) that an account of a more general type 
might have been confusing.) 

A "machine" is essentially a system whose behaviour is suffi
ciently law-abiding or repetitive for us to be able to make some 
prediction about what it will do (S. 7 /19). If a prediction can be 
made, the prediction may be in one of a variety of forms. Of one 
machine we may be able to predict its next state-we then say it 
is "determinate" and is one of the machines treated in Part I. Of 
another machine we may be unable to predict its next state, but we 
may be able to predict that, if the conditions are repeated many 
times, the frequencies of the various states will be found to have 
certain values. This possible constancy in the frequencies has 
already been noticed in S.9/2. It is the characteristic of the Markov 
chain. 

We can therefore consider a new class of absolute system: it is 
one whose states change with time not by a single-valued trans
formation but by a matrix of transition probabilities. For it to 
remain the same absolute system the values of the probabilities 
must be unchanging. 

In S.2/10 it was shown that a single-valued transformation 
could be specified by a matrix of transitions, with O's or 1 'sin the 
cells (there given for simplicity as O's or +'s). In S.9/4 a Markov 
chain was specified by a similar matrix containing fractions. Thus 
a determinate absolute system is a special case of a Markovian 
machine; it is the extreme form of a Markovian machine in which 
all the probabilities have become either 0 or 1. (Compare S.9/3.) 

A "machine with input" was a set of absolute systems, distin
guished by a parameter. A Markovian machine with input must 
similarly be a set of Markovian machines, specified by a set of 
matrices, with a parameter and its values to indicate which matrix 
is to be used at any particular step. 

The idea of a Markovian machine is a natural extension of the 
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idea of the ordinary, determinate machine-the type considered 
throughout Part I. If the probabilities are all 0 or I then the two are 
identical. If the probabilities are all very near to 0 or I, we get a 
machine that is almost determinate in its behaviour but that occa
sionally does the unusual thing. As the probabilities deviate fur
ther and further from 0 and 1, so does the behaviour at each step 
become less and less determinate, and more and more like that of 
one ofthe insects considered in S.9/4. 

It should be noticed that the definition, while allowing some 
indeterminacy, is still absolutely strict in certain respects. If the 
machine, when at state x, goes on 90% of occasions to y and on 
1 0% of occasions to z, then those percentages must be constant 
(in the sense that the relative frequencies must tend to those per
centages as the sequence is made longer; and the limits must be 
unchanging as sequence follows sequence). What this means in 
practice is that the conditions that determine the percentages must 
remain constant. 

The exercises that follow will enable the reader to gain some 
familiarity with the idea. 

Ex. 1: A metronome-pendulum oscillates steadily between its two extreme 
states, R and L, but when at the right (R) it has a I% chance of sticking there 
at that step. What is its matrix of transition probabilities? 

Ex. 2: A determinate machine a has the transformation 

t A B C D 
B D D D 

A Markovian machine~ has the matrix of transition probabilities 
t A B C D 

A 0 0 0 0 
B 0.9 0 0 0 
c 0 0 0.2 0 
D 0.1 1.0 0.8 1.0 

How do their behaviours differ? (Hint: Draw a's graph and draw Ws graph 
after letting the probabilities go to I or 0.) 

Ex. 3: A Markovian machine with input has a parameter that can take three val
ues-p, q, r-and has two states, a and b, with matrices 

(p) 
a b 

a 112 1 
b 112 0 

(q) 
a b 

a 1/4 3/4 
b 3/4 1/4 

(r) 
a b 

a 113 3/4 
b 213 114 

It is started at state b, and goes one step with the input at q, then one step with 
it at r, then one step with it at p. What are the probabilities that it will now be 
at a orb? 
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*Ex. 4: (Continued.) What general rule, using matrix multiplication, allows the 
answer to be written down algebraically? (Hint: Ex. 9/6/8.) 

*Ex. 5: Couple the Markovian machine (with states a, 6, c and input-states a, 
~) 

a b c a b c 

a 0.2 0.3 0.3 a 0.3 0.9 0.5 
a: b 0.7 0.2 {3: b 0.6 0.1 0.5 

c 0.8 0.5 c 0.1 

to the Markovian machine (with states e,fand input-states 8, £, 8) 

e f 
o: e 0.7 0.5 £: e 

f 0.3 0.5 f 

by the transformations 

t a b c 
e o e 

e 

0.2 
0.8 

f 
0.7 
0.3 

t e f 
f3 a 

e: 

e f 
e 0.5 0.4 
f 0.5 0.6 

What is the Markovian machine (without input) that results ? (Hint: Try 
changing the probabilities to 0 and 1, so as to make the systems determi
nate, and follow S.4/8; then make the probabilities fractional and follow 
the same basic method.) 

*Ex. 6: (Continued.) Must the new matrix still be Markovian? 
*Ex. 7: IfM is a Markovian machine which dominates a determinate machine N, 

show that N's output becomes a Markov chain only after M has arrived at 
statistical equilibrium (in the sense of S.9/6). 

12/9. Whether a given real machine appears Markovian or deter
minate will sometimes depend on how much of the machine is 
observable (S.3/11 ); and sometimes a real machine may be such 
that an apparently small change of the range of observation may 
be sufficient to change the appearances from that of one class to 
the other. 

Thus, suppose a digital computing machine has attached to it a 
long tape carrying random numbers, which are used in some proc
ess it is working through. To an observer who cannot inspect the 
tape, the machine's output is indeterminate, but to an observer 
who has a copy of the tape it is determinate. Thus the question "Is 
this machine really determinate?" is meaningless and inappropri
ate unless the observer's range of observation is given exactly. In 
other words, sometimes the distinction between Markovian and 
determinate can be made only after the system has been defined 
accurately. (We thus have yet another example ofhow inadequate 
is the defining of"the system" by identifYing it with a real object. 
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Real objects may provide a variety of equally plausible "sys
tems", which may differ from one another grossly in those prop
erties we are interested in here, and the answer to a particular 
question may depend grossly on which system it happens to be 
applied to.) (Compare S.6/22.) 

12/10. The close relation between the Markovian machine and the 
determinate can also be shown by the existence of mixed forms. 
Thus, suppose a rat has partly learned the maze, of nine cells, shown 
in Fig. 12/11/l, 

Fig. 12/10/1 

in which G is the goal. For reasons that need not be detailed here, 
the rat can get no sensory clues in cells 1, 2, 3 and 6 (lightly shaded), 
so when in one of these cells it moves at random to such other cells 
as the maze permits. Thus, if we put it repeatedly in cell 3 it goes 
with equal probability to 2 or to 6. (I assume equal probability 
merely for convenience.) In cells 4, 5, 7, 8 and G, however, clues 
are available, and it moves directly from cell to cell towards G. 
Thus, if we put it repeatedly in cellS it goes always to 8 and then to 
G. Such behaviour is not grossly atypical in biological work. 

The matrix of its transitions can be found readily enough. Thus, 
from 1 it can go only to 2 (by the maze's construction). From 2 it 
goes to 1, 3, or 5 with equal probability. From 4 it goes only to 5. 
From G, the only transition is to G itself. So the matrix can be 
built up. 

Ex.: Construct a possible matrix of its transition probabilities. 

12/11. Stability. The Markovian machine will be found on exami
nation to have properties corresponding to those described in Part I, 
though often modified in an obvious way. Thus, the machine's kin
ematic graph is constructible; though, as the transformation is not 
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single-valued, more than one arrow can go from each state. Thus 
the Markovian machine 

a b c 

a 0.2 0.3 0.1 
b 0.8 0.7 0.5 
c 0.4 

has the graph of Fig. 12/1111, in which each arrow has a fraction 
indicating the probability that that arrow will be traversed by the 
representative point. 

Fig. 12/11/1 

In this particular example it can be seen that systems at c will all 
sooner or later leave it, never to return. 

A Markovian machine has various forms of stability, which 
correspond to those mentioned in Chapter 5. The stable region is 
a set of states such that once the representative point has entered 
a state in the set it can never leave the set. Thus a and b above form 
a stable region. 

A state of equilibrium is simply the region shrunk to a single 
state. Just as, in the determinate system, all machines started in a 
basin will come to a state of equilibrium, if one exists, so too do 
the Markovian; and the state of equilibrium is sometimes called 
an absorbing state. The example of S.9/4 had no state of equilib
rium. It would have acquired one had we added the fourth position 
"on a fly-paper", whence the name. 

Around a state of equilibrium, the behaviour of a Markovian 
machine differs clearly from that of a determinate. If the system 
has a finite number of states, then if it is on a trajectory leading to 
a state of equilibrium, any individual determinate system must 
arrive at the state of equilibrium after traversing a particular tra
jectory and therefore after an exact number of steps. Thus, in the 
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first graph of S .2/17, a system at C will arrive at D in exactly two 
steps. If the system is Markovian, however, it does not take a 
unique number of steps; and the duration of the trajectory can be 
predicted only on the average. Thus suppose the Markovian 
machine is 

a b 

a 1 1/2 
b 0 1/2 

with a a state of equilibrium. Start a great number of such systems 
all at b. After the first step, half of them will have gone to a and half 
will be still at b. At the second step, a half of those still at b will 
move over to a and ahalf(i.e. a quarter of the whole) will remain at 
b. By continuing in this way we find that, of those that were started 
atb, 

1/2 reach a after 1 step 
1/4 " " " 2 " 
1/8 " " " 3 " 

and so on. The average time taken to get from b to a is thus 

1/2 X 1 + 1/4 X 2 + 1/8 X 3 + ... = 2 ste S. 
1/2 + 114 + 1/8 + .. . p 

Some of the trajectories will be much longer than 2 steps. 
As is now well known, a system around a state of equilibrium 

behaves as if "goal-seeking", the state being the goal. A corre
sponding phenomenon appears in the Markovian case. Here, 
instead of the system going determinately to the goal, it seems to 
wander, indeterminately, among the states, consistently moving to 
another when not at the state of equilibrium and equally consist
ently stopping there when it chances upon that state. The state still 
appears to have the relation of"goal" to the system, but the system 
seems to get there by trying a random sequence of states and then 
moving or sticking according to the state it has arrived at. Thus, the 
objective properties of getting success by trial and error are shown 
when a Markovian machine moves to a state of equilibrium. 

At this point it may be worth saying that the common name of 
"trial and error" is about as misleading as it can be. "Trial" is in 
the singular, whereas the essence of the method is that the 
attempts go on and on. "Error" is also ill-chosen, for the important 
element is the success at the end. "Hunt and stick" seems to 
describe the process both more vividly and more accurately. I 
shall use it in preference to the other. 
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Movement to a goal by the process of hunt and stick is thus 
homologous, by S.l2/8, to movement by a determinate trajectory 
for both are the movement of a machine to a state of equilibrium. 
With caution, we can apply the same set of principles and argu
ments to both. 

Ex. 1: What states of equilibrium has the system of Ex. 12/10/1 ? 
Ex. 2: A Markovian machine has matrix 

a b c d e f 
a 1/3 1/3 
b 1/3 1/3 
c 113 113 
d 
e 
f 

It is started at a on many occasions; how would its behaviour be described 
in the language of rat-maze psychology? 

MARKOVIAN REGULA TTON 

12/12. The progression of a single Markovian machine to a state of 
equilibrium is much less orderly than that of a determinate machine, 
so the Markovian type is little used in the regulators of industry. In 
comparison with the smooth and direct regulation of an ordinary 
servo- mechanism it must seem fumbling indeed. Nevertheless, liv
ing organisms use this more general method freely, for a machine 
that uses it is, on the whole, much more easily constructed and 
maintained; for the same reason it tends to be less upset by minor 
injuries. It is in fact often used for many simple regulations where 
speed and efficiency are not of importance. 

A first example occurs when the occupant of a room wishes to 
regulate the number of flies in the room at, or near, zero. Putting 
a flypaper at a suitable site causes no determinate change in the 
number of flies. Nevertheless, the only state of equilibrium for 
each fly is now "on the paper", and the state of equilibrium for 
"number of flies not on the paper" is zero. The method is primitive 
but it has the great virtues of demanding little and of working suf
ficiently well in practice. 

A similar method of regulation is that often used by the golfer 
who is looking for a lost ball in an area known to contain it. The 
states are his positions in the area, and his rule is, for all the states 
but one, "go on wandering"; for one however it is "stop the wan
dering". Though not perhaps ideal, the method is none the less 
capable of giving a simple regulation. 
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Another example of regulation, of a low order of efficiency, 
would be shown by a rat with serious brain damage who cannot 
remember anything of a maze, but who can recognise food when 
encountered and who then stops to eat. (Contrast his behaviour 
with that of a rat who does not stop at the food.) His progression 
would be largely at random, probably with some errors repeated; 
nevertheless his behaviour shows a rudimentary form of regula
tion, for having found the food he will stop to eat it, and will live, 
while the other rat will keep moving and starve. 

Ex. 1: A married couple decide to have children till they have a boy and then to 
stop. (i) Is the process regulatory? (ii)What is the matrix of transition prob
abilities? 

Ex. 2: Is the game ''Heads, I win; Tails, we toss again" regulatory? 

12/13. So far we have considered only the way in which a Marko
vian machine moves to its goal. In principle, its sole difference from 
a determinate machine is that its trajectory is not unique. Provided 
we bear this difference in mind, regulation by the Markovian 
machine can have applied to it all the concepts we have developed 
in the earlier chapters of this Part. 

(The warning given in S.ll/11 (pare. 5) must be borne in mind. 
The steps that take a Markovian machine along its trajectory are 
of a smaller order of magnitude than the steps that separate one act 
of regulation (one "move" in the sense of S.ll/3) from another. 
The latter steps correspond to change from one trajectory to 
another --quite different to the change from one point to the next 
along one trajectory.) 

Thus the basic formulation of S.ll/4 is compatible with either 
determinate or Markovian machines in T and R to provide the 
actual outcome. No difference in principle exists, though if we 
describe their behaviour in psychological or anthropomorphic 
terms the descriptions may seem very different. Thus if R is 
required (for given disturbance) to show its regulatory power by 
going to some state, then a determinate R will go to it directly, as 
if it knows what it wants, while a Markovian R will appear to 
search for it. 

The Markovian machine can be used, like the determinate, as a 
means to control; for the arguments ofS.ll/14 apply to both (they 
were concerned only with which outcomes were obtained, not 
with how they were obtained.) So used, it has the disadvantage of 
being uncertain in its trajectory, but it has the advantage of being 
easily designed. 
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12/14. Regulation by error. The basic formulation of S 11/4 is of 
extremely wide applicability. Perhaps its most important particular 
case occurs when both T and R are machines (determinate or Mark
ovian) and when the values of E depend on the various states of 
equilibrium that T may come to, with ,1] as some state (or states) 
that have some appropriate or desired property. Most physical reg
ulators are of this type. If R and T are Markovian machines the 
bringing ofT to a desired state of equilibrium 1J by the action of R 
can readily be achieved if advantage is taken of the fundamental 
fact that if two machines (such as T and Rare now assumed to be) 
are coupled, the whole can be at a state of equilibrium only when 
each part is itself at a state of equilibrium, in the conditions pro
vided by the other. The thesis was stated in S.5/13 for the determi
nate machine, but it is just as true for the Markovian. 

Let the regulator R be built as follows. Let it have an input that 
can take two values,~ andy. When its input is~ (for "bad") let no 
state be one of equilibrium, and when its input is y (for "good") let 
them all be equilibria!. Now couple it toT so that all the states in 
11 are transformed, at R 's input, to the value y, and all others to the 
value ~- Let the whole follow some trajectory. The only states of 
equilibrium the whole can go to are those that haveR at a state of 
equilibrium (by S.5/13); but this implies that R 's input must be at 
y, and this implies that T's state must be at one ofT]. Thus the con
struction of R makes it a vetoer of all states of equilibrium in T 
save those in T]. The whole is thus regulatory; and as T and Rare 
here Markovian, the whole will seem to be hunting for a "desira
ble" state, and will stick to it when found. R might be regarded as 
"directing" T's hunting. 

(The possibility that T and R may become trapped in a stable 
region that contains states not in 11 can be made as small as we 
please by making R large, i.e. by giving it plenty of states, and by 
seeing that its ~-matrix is richly connected, so that from any state 
it has some non- zero probability of moving to any other state.) 

Ex. 1: What, briefly, must characterise the matrix y, and what~? 
*Ex. 2: Show that the thesis ofS.5/13 is equally true for the Markovian machine. 

12/15. The homeostat. In this form we can get another point of view 
on the homeostat. In S.5/14 (which the reader should read again) we 
considered it as a whole which moved to an equilibrium, but there 
we considered the values on the stepping-switches to be soldered 
on, given, and known. Thus B's behaviour was determinate. We 
can, however, re- define the homeostat to include the process by 
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which the values in Fisher and Yates' Table of Random Numbers 
acted as determinants (as they certainly did).lfnow we ignore (i.e. 
take for granted) the resistors on the switches, then we can regard 
part B (ofS.S/14) as being composed of a relay and a channel only, 
to which comes values from the Table. We now regard B as having 
two inputs. 

10Ja~-~--: B 

0 : l : 
L : I Channell : I Table I 

B's state is still a vector of two components-a value provided by 
the Table and the state of the relay (whether energised or not). To 
an Observer who cannot observe the Table, B is Markovian (com
pare S.l2/9). Its input from A has two states,~ andy; and it has been 
built so that at~ no state is equilibria!, and at y every state is. Finally 
it is coupled as in S.S/14. 

The whole is now Markovian (so long as the Table is not 
observed). It goes to an equilibrium (as in S.S/14), but will now 
seem, to this Observer, to proceed to it by the process of hunt and 
stick, searching apparently at random for what it wants, and 
retaining it when it gets it. 

It is worth noticing that while the relay's input is at~. variety in 
the Table is transmitted to A, but when the input comes toy, the 
transmission is stopped. The relay thus acts as a "tap" to the flow 
of variety from the Table to A. The whole moves to a state of equi
librium, which must be one in which the entry of variety from the 
Table is blocked. It has now gone to a state such that the entry of 
variety from the Table (which would displace it from the state) is 
prevented. Thus the whole is, as it were, self-locking in this con
dition. (It thus exemplifies the thesis of S.4/22.) 

12/16. The example of the previous section showed regulation 
occurring in a system that is part determinate (the interactions 
between the magnets in A) and part Markovian (the values taken by 
the channel in part B). The example shows the essential uniformity 
and generality of the concepts used. Later we shall want to use this 
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generality freely, so that often we shall not need to make the distinc
tion between determinate and Markovian. 

Another example of regulation by a Markovian system is worth 
considering as it is so well known. Children play a game called 
"Hot or Cold?" One player (call him Tom for T) is blindfolded. 
The others then place some object in one of a variety of places, 
and thus initiate the disturbance D. Tom can use his hands to find 
the object, and tries to find it, but the outcome is apt to be failure. 
The process is usually made regulatory by the partnership of Rob 
(for R), who sees where the object is (input from D) and who can 
give information to Tom. He does this with the convention that 
the object is emitting heat, and he informs Tom of how this would 
be felt by Tom: "You're freezing; still freezing; getting a little 
warmer; no, you're getting cold again; ... ".And the children (if 
young) are delighted to find that this process is actually regula
tory, in that Tom is always brought finally to the goal. 

Here, of course, it is Tom who is Markovian, for he wanders, at 
each next step, somewhat at random. Rob's behaviour is more 
determinate, for he aims at giving an accurate coding of the rela
tive position. 

Regulation that uses Markovian machinery can therefore now 
be regarded as familiar and ordinary. 

DETERMINATE REGULATION 

12/17. Having treated the case in which T and Rare embodied in 
machines, and considered that in which the machinery is Marko
vian, we can now take up again the thread dropped in S.l2/7, and 
can specialise further and consider the case in which the probabili
ties have all become 0 or I (S.l2/8), so that the machinery is deter
minate. We continue with the regulator that is error-controlled. In 
order, as biologists, to explore thoroughly the more primitive forms 
of regulation, let us consider the case in which the feedback has a 
variety of only two states. 

An example of such a system occurs in the telephone exchange 
when a selector starts to hunt for a disengaged line. The selector 
tries each in turn, in a determinate order, gets from each in turn the 
information "engaged" or "disengaged", and stops moving 
(arrives at a state of equilibrium) at the first disengaged line. The 
set of disturbances here is the set of possible distributions of 
"engaged" or "disengaged" among the lines. The system is regu
latory because, whatever the disturbance, the outcome is always 
connexion with a disengaged line. 
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The mechanism is known to be error-controlled, for the infor
mation that determines whether it shall move on or stick comes 
from the line itself. 

This case is so simple as to be somewhat degenerate. If we pay 
no attention to the internal actions between R and T, so that they 
fuse to form the F of S.l 0/5, then the case becomes simply that of 
a determinate system which, when the initial state is given, runs 
along a determinate trajectory to a state of equilibrium. Thus 
every basin with a state of equilibrium in 11 can be said to show a 
simple form of regulation; for it acts so as to reduce the variety in 
the initial states (as disturbance D) to the smaller variety in the ter
minal state. 

Much the same can be said of the rat that knows its way about 
a warehouse; for wherever it gets to it can make its way back to 
the nest. As much can be said for the computer that is pro
grammed to work by a method of successive approximation; for, 
at whatever value it is started, the successive values are moved 
determinately to the goal, which is its only state of equilibrium. 

Ex.: A card is to be found in a shuffled pack of 52 by examination of them one 
by one. How many will have to be examined, on the average, if (i) the cards 
are examined seriatim, ( ii) if one is drawn, examined, returned if not wanted, 
the pack shuffled, a card drawn, and so on? (Systematic versus random 
searching.) 

12/18. When the machinery is all determinate, the problem ofS. 12/ 
14 may arise-that of getting T to go to some state of equilibrium 
that has some desired property. When this is so, the solution given 
there for the Markovian machine is, of course, still valid: one cou
ples on a vetoer. 

12/19. Continuous variation. After these primitive forms, we 
arrive at the regulators whose variables can vary continuously. (It 
must be remembered that the continuous is a special case of the 
discrete, by S.2/l.) Of the great numbers that exist I can take only 
one or two for mention, for we are interested here only in their 
general principles. 

Typical is the gas-heated incubator. It contains a capsule which 
swells as the temperature rises. The mechanism is arranged so that 
the swelling of the capsule cuts down the size of the gas flame (or 
of the amount ofhot air coming to the incubator); an undue rise of 
temperature is thus prevented. 
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The diagram of immediate effects is specially worth noting. It is 

Disturbances ----;;. 

Size of flame 

Temp. of 
incubator 

Diam. of 
Capsule 

Temp. of 
eggs 

Temp. of 
Capsule 

or some equivalent form. In it, D, T, R and E are readily identified 
(though the distinctions between T and R and their parts are some
what arbitrary). The whole acts to block the passage of variety from 
the Disturbances (whatever they are) to the eggs. If the aim ofthe 
regulator is re-defined slightly as being to keep constant the temper
ature of the incubator, then the regulator is controlled by the error 
rather than by the disturbances themselves. 

In this form of regulator, the system must, of course, be stable 
for any given disturbance, and the desired temperature must be the 
system's state of equilibrium. The feedback around the circuit 
must thus usually be negative. 

Many regulators in the living body are of this simple form, and 
Cannon's work has made them well known. Typical is that which 
regulates the pH of the blood by the amount of carbon dioxide in it: 

Disturbances ----;;. 

Concentration 
C02 in blood 

pH of the 
blood 

"" 

----;;. pH ofbody's 
tissues 

Activity of 
respiration 

rate ofEx
cretion of C02 

Again the system shows the features just mentioned. 
Among the innumerable examples of such mechanisms 

should be included the economic. Tustin's Mechanism of Eco-
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nomic Systems shows how closely their properties are cussed 
here. 

Ex. 1: Draw the diagram of immediate effects of any regulator known to you. 
Ex. 2: (Continued.) Think of some other parameters whose change would affect 

the regulator's working; add them to the diagram. 

12/20. A variant of this class, worth mention for the sake of com
pleteness, is that in which the regulating mechanism becomes 
active only intermittently. 

A reservoir tank, for instance, may have the level of fluid in it 
kept between two given levels by a siphon which has its inner 
opening at the lower level and its bend at the upper level. If the 
supply is usually greater than the demand, the siphon, by coming 
into action when the fluid reaches the upper level and by stopping 
its action when it reaches the lower, will keep the level within the 
desired range. 

Many physiological regulators act intermittently. The reaction 
to cold by shivering is such a case. This particular reaction is of 
special interest to us (compare S.l2/4) in that activity in the regu
lator can be evoked either by an actual fall in the bodily tempera
ture (error-control, from E) or, before the body has had time to 
cool, by the sight of things that will bring cold (control from D). 

THE POWER AMPLIFIER 

12/21. The fact that the discussion in this chapter has usually 
referred to the output E as being constant must not be allowed to 
obscure the fact that this form can cover a very great number of 
cases that, at first sight, have no element of constancy in them. The 
subject was referred to in S.11/15. Here we shall consider an appli
cation that is important in many ways already, and that will be 
needed for reference when we come to Chapter 14. I refer to those 
regulators and controllers that amplify power. 

Power amplifiers exist in many forms. Here I shall describe 
only one, selecting a form that is simple and clear (Fig. 12/21/1). 

Compressed air is supplied freely at A and makes its way past 
the constriction C before either going into the bellows B or escap
ing at the valve V. The pressure at A is much higher than the usual 
working pressure in B, and the aperture at C is small, so air flows 
past C at a fairly constant rate. It must then either escape at V or 
accumulate in B, driving up the pressure z. How fast the air escapes 
at V, where a hole is obstructed to some degree by a cone, depends 
on the movement up or down (x) of the cone, which is attached to 
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one end of a light stiff rod J, which can turn on a pivot K. Thus if 
K is unmoving, a movement down at the other end L will lift the 
cone, will allow air to escape, and wi II cause a fall of the pressure 
z inside B; conversely, a movement up at L will make z rise. 

The air pressure in B works in opposition to a heavy weight P, 
which IS continued upwards as a pillar, the whole weight being 
able to move only up or down. The pillar carries two pivots, K and 

Fig. 12/21/1 

M Mis pivot for a strong bar G, which is fixed at one end, FThus 
if P moves upwards, M must move upwards by the same amount, 
and G's free end H must move upwards by twice the distance. 

Now let us see what happens if L is moved. Suppose the opera
tor lifts L by one inch. The other end (V) falls at once by one inch 
the valve is more obstructed, less air escapes, and more accumu
lates in B, sending up the pressure. The increased pressure will lift 
P, and thus M and H Thus H's movements tend simply to copy 
L 's. (We can notice that the upward movement of P (L being fixed 
after its one inch rise) will make the valve V open, so the response 
of the whole system to L 's movement will be self-limiting, for the 
feedback is negative; subject to certain quantitative details, which 
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would require exact treatment in any particular embodiment, the 
system is thus stable at a state of equilibrium whose position is 
determined by L 's position.) 

The whole can thus also be regarded as a stable system that acts 
so that, while a movement of, say, one inch at L would tend to 
cause, at V, a movement of one inch also, the reaction of the sys
tem annuls this. So the system can also be regarded as one that 
acts so as to keep the position ofV constant. 

We can now see how it can become a power amplifier, and be 
used as a crane. 

The designer takes care to see that the lever J is light, and that 
the valve is shaped so that the escaping air, or the pressure z, has 
little effect on the force required at L. He also takes care that B 
shall have a large area of action on P, and that the average work
ing pressure z shall be high (with the pressure at A higher still). If 
he is successful, a small force at L, raising it through one inch, will 
be sufficient to evoke a large force at H sufficient to raise a heavy 
mass through the same distance. Thus a force of I lb. moving 
through one inch at L may result in a force of 1000 lbs. moving 
through one inch at H. It is thus a work- (or power-) amplifier. 

So far it has given merely a simple and clear exemplification of 
the principles of regulation and control described earlier. Later 
(S.l411) we shall return to it, for we shall have to be clear about 
how we can have, simultaneously, a law saying that energy cannot 
be created, and also a power-amplifier. 

Ex. 1: How many degrees of freedom for movement have the three bodies, P, 
J, G? 

Ex. 2: Modify the arrangement so as to make H move oppositely to L while 
keeping the equilibrium stable. 

Ex. 3: Modify the arrangement so that the equilibrium is unstable. 

GAMES AND STRATEGIES 

12/22. The subjects of regulation and control are extremely exten
sive, and what has been said so far only begins to open up the sub
ject. Another large branch of the subject arises when D and R are 
vectors, and when the compounding that leads eventually to the 
outcome in T or E is so distributed in time that the components of 
D and R occur alternately. In this case the whole disturbance pre
sented and the whole response evoked each consists of a sequence 
of sub-disturbances and sub- responses. 
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This, for instance, may be the case in wild life when a prey 
attempts to regulate against an attack by a predator, when the 
whole struggle progresses through alternating stages of threat and 
parry. Here the predator's whole attack consists of a sequence of 
actions D1, D2, D 3 .•. ,each of which evokes a response, so that the 
whole response is also a sequence, R1, R2, R3, •.• , The whole strug
gle thus consists of the double sequence 

Dl, Rl, D2, R2, D3 'R3, ... 

The outcome will depend on some relation between the predator's 
whole attack and the prey's whole response. 

We are now considering an even more complex interpretation 
of the basic formulation of S.ll/4. It is common enough in the 
biological world however. In its real form it is the Battle of Life; 
in its mathematical form it is the Theory of Games and Strategies. 
Thus in a game of chess the outcome depends on what particular 
sequence of moves by White and Black 

wl, Bl, wb B2. w3, B3, ... 

has been produced. (What was called a "move" in S.ll/4 corre
sponds, of course, to a play here.) 

This theory, well founded by von Neumann in the '30s, though 
not yet fully developed, is already too extensive for more than 
mention here. We should, however, take care to notice its close 
and exact relation to the subject in this book. It will undoubtedly 
be of great scientific importance in biology; for the inborn char
acteristics of living organisms are simply the strategies that have 
been found satisfactory over centuries of competition, and built 
into the young animal so as to be ready for use at the first demand. 
Just as many players have found "P-Q4" a good way of opening 
the game of Chess, so have many species found "Grow teeth" to 
be a good way of opening the Battle of Life. 

The relation between the theory of games and the subjects 
treated in this book can be shown precisely. 

The first fact is that the basic formulation of S.ll/4-the Table of 
Outcomes, on which the theory of regulation and control has been 
based-is identical with the "Pay-off matrix" that is fundamental in 
the theory of games. By using this common concept, the two theories 
can readily be made to show their exact relation in special cases. 

The second fact is that the theory of games, as formulated by 
von Neumann and Morgenstern, is isomorphic with that of certain 
machines with input. Let us consider the machine that is equiva
lent to his generalised game (Fig. 12/22/l). (In the Figure, the let-
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ters correspond with those by von Neumann in his Chapter 2, 
which should be consulted; his T's do not correspond to the usage 
in this book.) 

There is a machine M with input. Its internal structure (its 
transformations) is known to the players Ti It has three types of 
input: r, V, and T. A parameter r, a witch perhaps, determines 
which structure it shall have, i.e. which game is to be played. 
Other inputs Vi allow random moves to be made (e.g. effects 
from a roulette wheel or pack of shuffled cards to be injected; cf. 
S.l2/15). Each player, Ti, is a determinate dynamic system, cou
pled to Mboth ways. He receives information from Mby speci-

Fig 12/22/1 

fied channels Ji and then acts determinately on M The site of 
connexion of the r s is defined by r. Effects from each T, 
together with those of the other T' s and the V' s, exert, through M, 
complex controls over the dials G. When the play, i.e. trajectory, 
is completed, the umpire H reads the G's and then makes corre
sponding payments to the T' s. 

What we have here is evidently the case of several regulators, 
each trying to achieve a goal in G, working simultaneously, and 
interacting competitively within M (The possibility of competi
tion between regulators has not been considered explicitly in these 
chapters till now.) 

If the system is ultrastable, each T' s behaviour will be deter
mined by parameters, behaving as step-functions. If a particular 
player is "satisfied" by the payment from H, his parameters will 
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retain their values and his strategy will be unchanged; but if dis
satisfied (i.e. if the payment falls below some critical value) the 
step-functions will change value, and the loser, at the next play, 
will use a new strategy. 

A related subject is the theory of military codings and de-cod
ings. Shannon's Communication theory of secrecy systems has 
shown how intimately related are these various subjects. Almost 
any advance in our knowledge of one throws light on the others. 

More than this cannot be said at present, for the relationships 
have yet to be explored and developed. It seems to be clear that the 
theory of regulation (which includes many of the outstanding prob
lems of organisation in brain and society) and the theory of games 
will have much to learn from each other. If the reader feels that 
these studies are somewhat abstract and devoid of applications, he 
should reflect on the fact that the theories of games and cybernetics 
are simply the foundations of the theory of How to get your Own 
Way. Few subjects can be richer in applications than that! 

12/23. We are now at the end of the chapter, and the biologist may 
feel somewhat dissatisfied, for this chapter has treated only of sys
tems that were sufficiently small and manageable to be understood. 
What happens, he may ask, when regulation and control are 
attempted in systems ofbiological size and complexity? What hap
pens, for instance, when regulation and control are attempted in the 
brain or in a human society? 

Discussion of this question will occupy the remaining chapters. 
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Chapter 13 

REGULATING THE VERY LARGE 
SYSTEM 

13/1. Regulation and control in the very large system is of pecu
liar interest to the worker in any of the biological sciences, for 
most of the systems he deals with are complex and composed of 
almost uncountably many parts. The ecologist may want to regu
late the incidence of an infection in a biological system of great 
size and complexity, with climate, soil, host's reactions, preda
tors, competitors, and many other factors playing a part. The 
economist may want to regulate against a tendency to slump in a 
system in which prices, availability of labour, consumer's 
demands, costs of raw materials, are only a few of the factors that 
play some part. The sociologist faces a similar situation. And the 
psychotherapist attempts to regulate the working of a sick brain 
that is of the same order of size as his own, and of fearful com
plexity. These regulations are obviously very different from those 
considered in the simple mechanisms of the previous chapter. At 
first sight they look so different that one may well wonder 
whether what has been said so far is not essentially inapplicable. 

13/2. This, however, is not so. To repeat what was said in S.4/18, 
many of the propositions established earlier are stated in a form 
that leaves the size of the system irrelevant. (Sometimes the 
number of states or the number of variables may be involved, but 
in such a way that the proposition remains true whatever the 
actual number.) 

Regulation in biological systems certainly raises difficult prob
lems -that can be admitted freely. But let us be careful, in admit
ting this, not to attribute the difficulty to the wrong source. 
Largeness in itself is not the source; it tends to be so regarded partly 
because its obviousness makes it catch the eye and partly because 
variations in size tend to be correlated with variations in the source 
of the real difficulty. What is usually the main cause of difficulty is 
the variety in the disturbances that must be regulated against. 

The size of the dynamic system that embodies T tends to be corre-
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lated with the variety in D for several reasons. 1fT is made of many 
parts, and there is uncertainty about the initial state of any part, then 
that variety will be allocated to D (S. II /19); so in general, other 
things being equal, the greater the number of parts the greater the 
variety in D. Secondly, if each part is not completely isolated from 
the world around, each part's input will contribute some variety 
which will be allocated to D; so in general, the greater the number of 
parts the greater the number of components in D; and therefore, if 
the components have some independence, the greater the variety in 
D. (There may be other reasons as well but these will suffice.) 

Thus, when the effects of size are distinguished from those that 
affect the variety in D, it will usually be found that the former is, 
in itself, irrelevant, and that what matters is the latter. 

It now follows that when the system T is very large and the 
regulator R very much smaller (a common case in biology), the 
law of Requisite Variety is Likely to play a dominating part. Its 
importance is that, if R is fixed in its channel capacity, the law 
places an absolute limit to the amount of regulation (or control) 
that can be achieved by R, no matter how R is re-arranged inter
nally, or how great the opportunity in T. Thus the ecologist, if his 
capacity as a channel is unchangeable, may be able at best only to 
achieve a fraction of what he would like to do. This fraction may 
be disposed in various ways -he may decide to control outbreaks 
rather than extensions, or virus infections rather than bacillary
but the quantity of control that he can exert is still bounded. So too 
the economist may have to decide to what aspect he shall devote 
his powers, and the psychotherapist may have to decide what 
symptoms shall be neglected and what controlled. 

The change in the point of view suggested here is not unlike that 
introduced into statistics by the work of Sir Ronald Fisher. Before 
him, it was taken for granted that, however clever the statistician, 
a cleverer could get more information out of the data. Then he 
showed that any given extraction of information had a maximum, 
and that the statistician's duty was simply to get near the maxi
mum- beyond that no man could go. Similarly, before Shan
non's work it was thought that any channel, with a little more 
skill, could be modified to carry a little more information. He 
showed that the engineer's duty is to get reasonably near the max
imum, for beyond it no-one can go. The law of Requisite Variety 
enforces a similar strategy on the would-be regulator and control
ler: he should try to get near his maximum-beyond that he can
not go. Let us therefore approach the very large system with no 
extravagant ideas of what is achievable. 
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13/3. Before we proceed we should notice that when the system is 
very large the distinction between D, the source of the distur
bances, and T, the system that yields the outcome, may be some
what vague, in the sense that the boundary can often be drawn in 
a variety of ways that are equally satisfactory. 

This flexibility is particularly well-marked among the systems 
that occur on this earth (for the terrestrial systems tend markedly 
to have certain general characteristics). On this earth, the whole 
dynamic biological and ecological system tends to consist of 
many subsystems loosely coupled (S.4/20); and the sub-systems 
themselves tend to consist of yet smaller systems, again more 
closely coupled internally yet less closely coupled between one 
another; and so on. Thus in a herd of cattle, the coupling between 
members is much looser than the couplings within one member 
and between its parts (e.g. between its four limbs); and the four 
limbs are not coupled as closely to one another as are the mole
cules within one bone. Thus if some portion of the totality is 
marked out as T, the chief sourceD of disturbance is often other 
systems that are loosely coupled to T, and often sufficiently sim
ilar to those in T that they might equally reasonably have been 
included in it. In the discussion that follows, through the rest of 
the book, this fact must be borne in mind: that sometimes an 
equally reasonable demarcation ofT and D might have drawn the 
boundary differently, without the final conclusions being affected 
significantly. Arbitrary or not, however, some boundary must 
always be drawn, at least in practical scientific work, for other
wise no definite statement can be made. 

13/4. When the system T is very large-when the organism as 
regulator faces a very large and complex environment with lim
ited resources-there are various ways that may make regulation 
possible. (If regulation is not possible, the organism perishes-an 
extremely common outcome that must not be forgotten; but this 
case needs no detailed consideration.) 

Sometimes regulation may be made possible by a re-defining of 
what is to be regarded as acceptable-by a lowering of standards. 
This is a somewhat trivial solution, though not to be forgotten as 
a possibility. 

Another possibility is to increase the scope and power of R, until 
R 's capacity is made adequate. This method must obviously never 
be forgotten; but we shall give it no detailed consideration. Let us 
consider more fully the interesting case in which the regulation, 
apparently most difficult or impossible, is actually possible. 
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13/5. Constraints. What this means, by the law of Requisite Vari
ety, is that the variety in the disturbances D is not really as large 
as it seems; in other words, by S. 7/8, the disturbances show a con
straint. 

Thus the case we are led to is the following: D has many com
ponents, each of which shows variety. The first estimate of D 's 
variety puts it too high, and we are in danger of deducing (if the 
regulator's capacity is given) that regulation of E to a certain 
degree is not possible. Further examination of D may, however, 
show that the components are not independent, that constraint 
exists, and that the real variety in D is much lower than the first 
estimate. It may be found that, with R 's capacity given, this 
smaller variety can be regulated against, and full regulation or 
control achieved at E. Thus the discovery of a constraint may con
vert "regulation impossible" to "regulation possible". If R 's 
capacity is fixed, it is the only way. 

We are thus led again to the importance and usefulness of dis
covering constraints, and to yet another example of the thesis that 
when a constraint exists it can be turned to use (S.7/14). 

Let us then consider the question of what constraints may occur 
in the disturbances that affect very large systems, and how they 
may be turned to use. The question is of major practical impor
tance, for if R 's capacity is not easily increased and the other meth
ods are not possible, then the law of Requisite Variety says that the 
discovery of a constraint is the would-be regulator's only hope. 

13/6. As was said in S.7110, constraints do not fall into a few sim
ply- described classes. Having indicated some of the more inter
esting possibilities in Chapter 7, I can only continue to mention 
those classes that are of peculiar interest to us now. With this brief 
reference I shall pass by a vast subject, that comprises a major part 
of all human activity. 

Accordingly we shall study one particular form of constraint. It 
is of great interest in itself, it will illustrate the thesis of the last 
chapter, and it is of considerable practical importance in the reg
ulation of the very large system. 

REPETITIVE DISTURBANCE 

1317. Though little reference has been made to the fact in the last 
few chapters, many disturbances (and the corresponding regula
tory responses) are repetitive, especially if the system is viewed 
over a long time. The cough reflex is regulatory and useful not 
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merely because it removes this particle of dust but because, in a 
lifetime, it removes particles again and again-as many times as 
are necessary. Most of the physiological regulators act again and 
again, as often as is necessary. And the coastal lifeboat saves lives 
not once but again and again. If, in the last few chapters, we have 
spoken of "the regulatory response" in the singular, this is only 
because the single action is typical of the set, not because the set 
necessarily has only one element. 

So many of the well-known regulations are repetitive that it is 
difficult to find a regulation that acts once only. A possible exam
ple is given by an observatory making plans so as to have every
thing ready in case a supernova should occur, an event not likely 
to occur twice in the director's lifetime. Various possibilities 
would have to be considered-in which part of the sky it might 
appear, whether during day or night, the spectral and other pecu
liarities which would determine what particular type of plate and 
filter should be used in photographing it, and so on. In making his 
plans, the director would, in fact, draw up a table like that of S.lll 
4, showing the uncertainties (D) to be feared, the resources (R) 
available, and the outcomes (E). Inspection of the table, as in Ex. 
1114/4, would then enable him to decide whether, in all cases, he 
would get what he wanted. 

There are, therefore, cases in which the regulation has to be 
exerted against a non-repetitive disturbance, but they are uncommon. 

From here on we shall consider the case in which the distur
bance, and the regulatory response, occur more than once; for 
such cases show constraint, of which advantage can be taken. 

13/8. The constraint occurs in the following way. 
The basic formulation of the regulatory process referred to a set 

of disturbances but assumed only that the separate elements in the 
set were distinct, nothing more. Like any other quantity, a distur
bance may be simple or a vector. In the latter case, at least two 
main types are distinguishable. 

The first type was discussed in S.ll/17: the several components 
of the disturbance act simultaneously; as an air-conditioner might, 
at each moment, regulate both temperature and humidity. 

The second type is well shown by the thermostatically-control
led water bath, it can be regarded as a regulator, over either short 
or long intervals of time. Over the short interval, "the distur
bance" means such an event as "the immersion ofthis flask", and 
"its response" means "what happens over the next minute". Its 
behaviour can be judged good or bad according to what happened 
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in that minute. There is also the long interval. After it has worked 
for a year someone may ask me whether it has proved a good reg
ulator over the year. While deciding the reply, I think of the whole 
year's disturbance as a sort of Grand Disturbance (made up of 
many individual disturbances, with a small d), to which it has pro
duced a Grand Response (made up of many individual responses, 
with a small r). According to some standard of what a bath should 
do over a year (e.g. never fail badly once, or have an average devi
ation of less than l/2°, etc.) T form an opinion about the Grand 
Outcome- whether it was Good or Bad-and answer the ques
tion accordingly. 

It should be noticed that what is "Good" in the Grand Outcome 
does not follow necessarily from what is "good" (77) in the indi
vidual outcomes; it must be defined anew. Thus, if I go in for a 
lottery and have three tickets, a win on one (and consequent Joss 
on the other two) naturally counts as "Good" in the Grand Out
come; so here I good + 2 bad = Good. On the other hand, if I am 
tried three times for murder and am found not guilty for one, the 
individual results are still T good + 2 bad, but in this case the 
Grand Outcome must naturally count as Bad. In the case when the 
individual disturbances each threaten the organism with death, 
Good in the Grand Outcome must naturally correspond to "good 
in every one of the individual outcomes". 

These Grand Disturbances are vectors whose components are 
the individual disturbances that came hour by hour. These vectors 
show a form of constraint. Thus, go back to the very first example 
of a vector (S.3/5). It was A; contrast it with B: 

A 
Age of car: 
Horse power: 
Colour: 

B 
Age ofJack's 

, , Jill's 
, Tom's 

car: 

" 

Obviously B is restricted in a way that A is not. For the variety in 
the left-hand words in A's three rows is three; in B's three rows it 
is one. 

Vectors like B are common in the theory of probability, where 
they occur under the heading "sampling with replacement". Thus, 
the spin of a coin can give only two results, H or T. A coin spun 
six times in succession, however, can give results such as (H, H, 
T, H, T, H), or (T, T, H, H, T, H), and so on for 64 possibilities. 
(Compare S.9/9.) 

What is important here is that, in such a set of vectors (in those 
whose components all come from the same basic class, as in B), 
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two varieties can be distinguished: there is (i) the variety within 
the basic class (2 for the coin, the number of distinct possible ages 
in B), and (ii) the variety built up by using the basic class n times 
over (if the vector has n components). In the example of the coin, 
the two varieties are 2 and 64. In general, if the variety within the 
basic class is k, and the vector has n components, each a member 
of the class, then the two varieties are, at most, k, and kn. In par
ticular it should be noticed that if the variety in the basic class has 
some limit, then a suitably large value of n will enable the second 
variety to be made larger than the limit. 

13/9. These considerations are applicable in many cases of regu
lation. Suppose, for definiteness, that the water bath may be 
affected in each minute by one of the three individual distur
bances: 

(a) a draught of air cooling it, 
(b) sunshine warming it, 
(c) a cold object being immersed in it. 

The variety is three, but this number is hardly representative of 
the variety that will actually occur over a long time. Over a year, 
say, the Grand Disturbance is a long vector, with perhaps some 
hundreds of components. Thus one Grand Disturbance might be 
the vector (i.e. the sequence) with 400 components: 

(a, b, a, b, b, a, c, b, b, c, c, b, b, ... c, b, a, b). 

And if the individually correct responses are, respectively a, ~ 
and y, then the Grand Response appropriate to this particular Dis
turbance would be the vector (i.e. sequence) 

(a,~. a,~.~. a, y, ~. ~. y, y, ~. ~ •... y, ~.a,~). 
If there is no constraint in the Disturbance from component to 

component as one goes from left to right, the whole set of possible 
Disturbances has variety of 3400; and the Grand Response must 
have at least as much if full regulation is to be obtained. 

We now come to the point: the double sequence, as it occurred 
in time, shows the characteristic constraint of a machine, i.e. it 
defines a machine up to an isomorphism. Thus, in the example 
just given, the events occurred in the order, from left to right: 

a b abba c b b c c ... , etc. 
a~ a~~ a y ~ ~ yy ... ,etc. 

(though not necessarily at equal time-intervals). It is now easily 
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verified that this sequence, as a protocol, defines the machine with 
input: 

a f3 y 

a a a a 
b f3 f3 f3 
c y y y 

Thus when the Grand Disturbance is a vector whose components 
are all from a basic set of disturbances, the Grand Response can 
either be a vector of equal variety or the output of a suitable 
machine with input. 

13/10. Suppose that the regulation discussed throughout Part III is 
the responsibility of some entity Q, often the possessor of the 
essential variables E. Through the previous chapters we have stud
ied how the regulator R must behave. We have now seen that in the 
case when the disturbances are repetitive, Q has the option of 
either being the regulator (i.e. acting as R) or of building a machine 
that, once built, will act as R and will carry out a regulation of 
indefinite length without further action by Q. We have thus arrived 
at the question: should Q achieve the regulation directly, by his 
own actions, or should he build a machine to undertake the work? 

The question would also have arisen for another reason. From 
the beginning of Part Ill we took for granted that the regulator 
existed, and we then asked what properties it must have. Nothing 
was said about how the regulator came to be made, about the fac
tors that brought it into existence. Thus, having seen in S.l 0/5 how 
advantageous it would be if the organism could have a regulator, 
we showed no means by which the advantage could be gained. 

For both these reasons we must now start to consider how a reg
ulatory machine is actually to be designed and made. Here we 
shall be thinking not so much of the engineer at his bench as of the 
brain that, if it is to achieve regulation in its learned reactions, 
must somehow cause the development of regulatory machinery 
within the nervous material available; or of the sociologist who 
wants a regulatory organisation to bring harmony into society. 

To understand what is involved, we must look more closely at 
what is implied, in principle, in the "designing" of a regulatory 
machine. 

DESIGNING THE REGULA TOR 

3111. Design as communication. Let us forget, temporarily, all 
about "regulation", and turn simply to certain questions related to 
the design and construction of a machine, any machine. 
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Our treatment of it, while losing nothing in precision, must be 
very broad-that is to say, abstract-for, as biologists, we want to 
consider machines of far wider type than those of steel and brass. 
Within the formula 

Entity Q designs machine M 

we want to include such cases as 

(1) The genes determining the formation of the heart. 
(2) A mechanic making a bicycle. 
(3) One part of the brain determining the internal connexions in 

a nerve-net. 
(4) A works-manager laying out a factory to get production go

ing along certain lines. 
(5) A mathematician programming an automatic computer to 

behave in a certain way. 

What we shall be concerned with, if we hold to the cybernetic 
point of view, is not the more obvious processes of shaping or 
assembling pieces of matter, but with the less obvious questions of 
what determines the final model, of how it comes to be selected. 
We are interested in tracing long chains of cause and effect, so that 
we can relate a set of possible initial causes to a set of final 
machines issuing as consequence; as a telephone mechanic, with a 
cable of a hundred wires, relates each one going in at one end to 
some one coming out at the other. By treating the matter in this 
way we shall find that certain quantitative relations must hold; on 
them we can base the ideas of the last chapter. Throughout, we 
shall be exemplifYing the thesis of D. M. MacKay: that quantity of 
information, as measured here, always corresponds to some quan
tity, i.e. intensity, of selection, either actual or imaginable. 

The concepts of selecting, designing, constructing, building 
(briefly, in any way being responsible for the eventual appearance 
of) an actual machine share a common property, when one identi
fies and measures the varieties concerned in the process. What 
might turn up as Mhas variety-an embryo might produce any one 
of many forms of muscular blood-pump. In fact, the gene-pattern in 
Lumbricus leads to the production of an earthworm's heart, the 
gene-pattern in Rana leads to the production of a frog's heart, and 
that in Homo to a man's heart. Control, by the gene-pattern over the 
heart, is clearly involved. So too is regulation, for in whatever state 
the molecules in Lumbricus happen to be initially (there being vari
ety in the possibilities), under the action of the gene-pattern the 
variety disappears, and a heart of standard worm's form appears. 

252 



REGULATING THE VERY LARGE SYSTEM 

It will be noticed that the concepts of design or construction are 
essentially applicable to sets, in spite of the common linguistic use 
ofthe singular. (Compare S.7/3.) Thus "the gene-pattern deter
mines the form of the heart" is a shorthand way of saying that ele
ments in the set of gene-patterns among different species can be 
put into correspondence with those in the set of possible hearts in 
the various species, like the wires at the two ends of a telephone 
cable. Thus the act of "designing" or "making" a machine is 
essentially an act of communication from Maker to Made, and the 
principles of communication theory apply to it. In particular the 
measures that were developed for treating the case in which vari
ous possible messages are reduced to one message can now be 
applied to the case when various possible machines are reduced to 
one machine. 

A useful conceptual device for forcing this aspect into promi
nence is to imagine that the act of designing has to take place 
through the telephone, or by some other specific channel. The 
quantities of variety can then readily be identified by identifica
tion of the actual quantity of information that will have to be trans
mitted. 

13/12. When a designer selects the final form of the machine, 
what does "selecting" the machine mean in terms of the general 
concepts of this book? Consider the following sequence of exam
ples, in which the final machine is a radio receiver. 

The first is the case of the buyer who has three machines before 
him, and he selects one. The second case, equivalent to the first 
from the abstract point of view, occurs when the designer of a 
radio set, wavering between three possible circuits, finally selects 
one. The third case, abstractly equivalent to the previous two, 
occurs when the owner of a radio set that has three circuits built 
into it, moves a switch to one of three positions and thereby 
selects which circuit shall actually be used. Thus, from the 
abstract point of view, selecting one machine from three is equiv
alent to selecting one value from three at a parameter. For exam
ple, suppose the choice is to be between the three machines a, ~ 
and y (each on the states a and b); 

a:tab {3:tab 
b a a a 

1 a b 
r· t b b 

Suppose ~ is selected and the selector finishes with the machine 

t a b 
a a 
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Abstractly this selection is identical with having initially a 
machine with three-valued input: 

a 
f3 
y 

a b 

b 
a 
b 

a 
a 
b 

and then deciding that the input shall be fixed permanently at ~· 
(The processes are identical in the sense that if some observer 
watches only the results of the processes, he cannot tell which has 
occurred except by reference to other, unmentioned, criteria.) 

In this example, fixing the input at ~ leaves the resulting 
machine an absolute system, without input. If the result of the 
selection is to be a machine with input, then the original machine 
must start with two or more inputs, so that the fixing of one by the 
act of design selection leaves the others free for further variation 
as ordinary inputs. 

The designer's act of selecting one model from many is equivalent 
to some determining factor fixing an input at a permanent value. 

13/13. (This section treats a minor complication.) 
In the examples above, the choice has been between machines 

whose transformations have had the same set of operands, i.e. the 
same set of states in the machine. What if the choice were to lie 
between, say, 

t a b 
b a 

and t p q r? 
r q r 

Can such a selection be represented by the fixing of an input 
value? Such a choice might occur in the early stages of design, as 
when the first decision is made whether the components shall be 
electronic or hydraulic. 

In fact this case is contained in the former, and can be repre
sented in it by a mere change of notation. Thus the choice just 
mentioned can equally be represented as that between 1.1 and v in 
the (reducible) machine, whose states are couples: 

(a,p) (a,q) (a,r) (b,p) (b,q) (b,r) 

f.1 (b .) (b .) (b .) (a.) (a.) (a.) 
v ( r) ( q) ( r) ( r) ( q) ( r) 
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(In the transformation, dots represent values that do not matter.) 
If now 11 is chosen, one part gives the machine 

t a b 
b a 

the other components being ignored; while if v is chosen, the 
other part gives 

1 p q r 
r q r 

Thus the initial formulation is really quite general. 

13/14. Design in a Black Box. It will be noticed that the operation 
of"design", as understood here, can be carried out within a Black 
Box, if it has an input. In fact, the owner of the radio set (S.13/12), 
if he knows nothing of its contents, but does know how the output 
is affected by the switch, does perform the act of"design in a Black 
Box" when he sets the switch and gets the desired behaviour. 

Other examples extend the range of the same theme. The Black 
Box, or the radio set, may be dominated by another machine, 
whose activities and values determine the switch's position. If so, 
we can say (provided we remember the sense in which we are 
using the words) that the dominating machine, when it sets the 
switch at a particular position, "designs" the radio set. What is 
important is that the dominating machine shows to the radio set 
those properties that are objectively shown by the behaviour of a 
designer. 

The same point of view may be applied to the brain, and we can 
see how one part of a brain can show towards another part the 
objective behavioural relationship of designer to machine. We can 
begin to see how one part-a basal structure perhaps--can act as 
"designer" towards a part it dominates, towards a neural network, 
say. 

Thus the idea of one machine designing another can be stated in 
exact and general terms-exact in the sense that experiment can 
be used to show objectively whether or not this relationship holds. 

QUANTITY OF SELECTION 

13/15. This aspect of design-of the reduction in numbers that 
occurs when the many initial possibilities are reduced to the final 
few or one--can easily be measured. We can use the same scales 
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as are used for measuring variety and information (S. 717 and 9/11) 
and they can be measured either directly or logarithmically. 

The measure, besides being convenient, has the natural prop
erty that it specifies the capacity that the channel C must have 

I Designer 1---71 Machine I 
c 

if the transmission of the necessary variety or information from 
Designer to Machine is to be possible. 

It will be noticed that this method does nothing to answer the 
question "how much design is there in this machine (without ref
erence to what it might have been)?" for the measure exists only 
over the set of possibilities. It applies, not to the thing that results, 
but to the act of communication (S.l3/11 ). 

The exercises will help to give reality to the somewhat abstract 
arguments, and will show that they agree satisfactorily with what 
is evident intuitively. 

Ex. 1: At one stage in the design of a certain electrical machine, three distinct 
ohmic resistances must have their values decided on. Each may have any 
one of the values 10, 15, 22, 33, 47, 67 or loo ohms independently. How 
much variety must the designer supply (by the law of Requisite Variety) if 
the possibilities are to be reduced to one? 

Ex. 2: (Continued. A similar three is to have its resistances selected to the near
est ohm, i.e. from the set 10, 11, 12, ... , 99, 100. How much variety must 
the designer now supply ? 

Ex. 3: Three resistances can each have the value of 10, 20 or 30 ohms. If they 
are connected in parallel, how much variety must the designer supply if the 
possible electrical properties are to be reduced to one ? 

Ex. 4: How much design is needed if the decision lies between the two 
machines, both with states a, b, c, d: 

~ a 
b 

b 

a 

c 

b 

d 
and 

c 
~ a 

c 

b 

b 

c d 
? 

c a 

Ex. 5: How much design goes to the production of a penny stamp, (i) as con
sisting of 15,000 half-tone dots each of which may be at any one of 10 
intensities? (ii) as the final form selected by Her Majesty from three sub
mitted forms? Explain the lack of agreement. 

Ex. 6: How much variety must be supplied to reduce to one the possible 
machines on a given n states? (Hint: Ex. 7/7/8.) 

Ex. 7: (Continued.) Similarly when the machine's states number n and the 
input's states (after design) number i. 
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13/16. Exactly the same measure may be applied to the design of 
a Markovian machine. Thus the variety between the two Marko
vian machines 

113 112 114 and 
113 112 
113 1/2 114 

1/3 113 113 
113 1/3 1/3 
113 1/3 1/3 

is just 1 bit, for we are choosing between two objects, whose inner 
contents-the various fractions-are here irrelevant. (This quantity 
of 1 bit is, of course, different from the 1.58 bits that would be asso
ciated with the right -hand matrix regarded as an information source 
that produces 1 58 bits on the average, at each step (S.9/12).) 

13/17. Selection in stages. The process of selection may be either 
more or less spread out in time. In particular, it may take place in 
discrete stages. 

The driver about to choose a new car often proceeds in this way. 
He first says, perhaps, "It must cost less than £1000". This crite
rion effects some reduction in the number of possibilities. Then 
perhaps he adds that it must also be able to take five people. So he 
goes on. Each new criterion makes the surviving possibilities 
fewer. If he can buy only one car then the criteria must eventually 
reduce the possibilities to one. Somehow this reduction must be 
made, even if the spin of a coin has to be used as final selector. 

The abstract selection (or design) of a machine can similarly 
take place in stages. Thus suppose the machine has the four states 
a, b, c, d. The transformation T 

1 a b c d 
T:t * * * * 

-in which the asterisks are not yet decided on-leaves all possi
bilities open. The change to transformation U 

1 
a b c d 

U:tc*b* 

represents a partial selection. U also represents a set of transfor
mations, though a smaller set. So does V: 

a b c d 
V:~'---y--J 

b or c * * * 
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which excludes all single-valued transformations that include the 
transitions a ---7 a or a ---7 d. A machine can thus be selected in 
stages, and the stages may be defined in various ways. 

What is fundamental quantitatively is that the overall selection 
achieved cannot be more than the sum (if measured logarithmically) 
of the separate selections. (Selection is measured by the fall in vari
ety.) Thus if a pack of cards is taken, and a 2-bit selection is made 
and then a 3-bit, a unique card cannot be indicated unless a further 
selection of at least 0.7 bits is made, for log2 52 is 5.7. The limitation 
is absolute, and has nothing to do (if a machine is selected) with the 
type of machine or with the mode of selection used. 

Ex. I: How many possibilities are removed when, to the closed, single-valued 
transformation on a, b and c with all 27 forms initially possible, the restric
tion is added "It must have no state of equilibrium" ? 

Ex. 2: (Continued.) When the restriction is "lt must have three states of equilib
rium"? 

Ex. 3: In logarithmic measure, how much selection was exerted in Ex. I? 
*Ex. 4: How much selection is exerted on an absolute system ofn states, a 1, a2, 

... ,~.with all transformations initially possible, if the restriction is added 
''It must contain no state of equilibrium?" (Hint: To how many states may 
a! now transform, instead of to then previously?) (Cf. Ex. 1.) 

*Ex. 5: (Continued.) To what does this quantity tend as n tends to infinity? 
(Hint: Calculate it for n = I 0, I 00, 1000.) (This estimation can be applied 
to the machine ofS.l2/15.) 

*Ex. 6: u: as described in this section, the cards of a shuffied pack are searched 
(without further shuffling) one by one in succession for a particular card, 
how much information is gained, on the average, as the first, second, third, 
etc., cards are examined? (Systematic searching.) 

*Ex. 7: (Continued.) How much if, after each failure, the wrong card is 
replaced and the pack shuffled before the next card is drawn? (Random 
searching.) 

13/18. Supplementation of selection. The fact that selection can 
often be achieved by stages calTies with it the implication that the 
whole selection can often be calTied out by more than one selec
tor, so that the action of one selector can be supplemented by the 
action of others. 

An example would occur if a husband, selecting a new car from 
the available models, first decided that it must cost less than £I 000, 
and then allowed his wife to make the remainder of the selection. It 
would occur again if the wife, having reduced the number to two 
models, appealed to the spin of a coin to make the final decision. 

Examples are ubiquitous. (Those that follow show supplementa
tion by random factors, as we shall be interested in them in the next 
chapter.) At Bridge, the state of the game at the moment when the 
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first card is led has been selected partly by the bids of the players and 
partly by chance-by the outcome of the statistically standardised 
act of shuffling-which has selected the distribution of the cards. 
(Compare Fig. 12/22/l.) The Rules of Bridge ensure, in fact, that a 
definite part of the whole determination shall be assigned to chance, 
i.e. to shuffling carried out in a prescribed way. Such an appeal to 
chance was frequently used in the past as a method for supplement
ing selection. The Roman general, for instance, after having made 
many decisions, would often leave the remainder to be determined 
by some other factor such as the flight of the next flock of birds, or 
the configurations shown in the entrails of a freshly-killed sheep. 
(Supplementation was used earlier in this book in S.4/19 and 12/15.) 

In scientific work the first deliberate use of wholly uncorrelated 
selectors to provide "random" determination to complete the 
selection imposed by the experimenter, was made apparently by 
Sir Ronald Fisher; for he first appreciated its fundamental impor
tance and usefulness. 

(By saying a factor is random, I do not refer to what the factor 
is in itself, but to the relation it has with the main system. Thus the 
successive digits of 1t are as determinate as any numbers can be, 
yet a block of a thousand of them might serve quite well as ran
dom numbers for agricultural experiments, not because they are 
random but because they are probably uncorrelated with the 
peculiarities of a particular set of plots. Supplementation by 
"chance" thus means (apart from minor, special requirements) 
supplementation by taking effects (or variety) from a system 
whose behaviour is uncorrelated with that of the main system. An 
example was given in S.12/15. Thus if a chance variable were 
required, yesterday's price of a gold-share might be suitable if the 
main system under study was a rat in a maze, but it would not be 
suitable if the main system were a portion of the financial-eco
nomic system.) 

SELECTION AND MACHINERY 

13/19. Selection by machine. In the preceding sections we have 
considered the questions of communication involved when a 
machine is to be selected. Whatever does the selecting is, how
ever, on general cybernetic principles, also to be considered as a 
mechanism. Thus, having considered the system 

~~~ 
when L acts so as to design or select the machine M, we must now 
consider L as a machine, in some way acting as designer or selec-
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tor. How can a machine select? The answer must, of course, be 
given in terms compatible with those already used in this Part. 

Perhaps the simplest process of selection occurs when a machine 
goes along a particular trajectory, so that after state i (say) it goes to 
state j (say) and not to any other of its states. This is the ordinary 
selection that a machine makes when its "message" (the protocol 
from it) says that the machine has this transformation and no other. 

Another process of selection shown by a machine is that noticed 
in S.7/24: every determinate machine shows selection as it 
reduces the variety in its possible states from the maximum ini
tially to the number of its basins finally. 

Another process of selection was treated in S.S/13, when one part 
of a whole can select from states of equilibrium in the other part by 
"vetoing" some of them. This is perhaps the most obvious form of 
selection, for, as the two are watched, the imaginative observer can 
almost hear the vetoing part say " ... no good, still no good, I won't 
have it, still no good, Hold It!-yes, we'll keep that permanently." 
If a machine is to be built as a selector (perhaps to carry out the pro
gramme hinted at in the final section) it will, so far as I can see, have 
to be built to act in this way. It is the way of the second-order feed
back in Fig. 511411 (supplemented in S.l2/15). 

There are doubtless other methods, but these will suffice for 
illustration, and they are sufficient to give definiteness to the idea 
of a machine "selecting"; (though special consideration is hardly 
necessary, for in Shannon's theory every act of communication is 
also one of selection-that by which the particular message is 
caused to appear). 

13/20. Duration of selection. At this point a word should be said 
about how long a given act of selection may take, for when actual 
cases are examined, the time taken may, at first estimate, seem too 
long for any practical achievement. The question becomes specially 
important when the regulator is to be developed for regulation of a 
very large system. Approximate calculation of the amount of selec
tion likely to be necessary may suggest that it will take a time far 
surpassing the cosmological; and one may jump to the conclusion 
that the time taken in actually achieving the selection would have to 
be equally long. This is far from being the case, however. 

The basic principles have been made clear by Shannon, espe
cially in his Communication theory of secrecy systems. He has 
shown that if a particular selection is wanted, of 1 from N, and if 
the selector can indicate (or otherwise act appropriately) only as 
to whether the required element is or is not in a given set, then the 
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method that achieves the whole selection in the fewest steps is 
selection by successive dichotomies, so that the early selections 
are between group and group, not between elements. This method 
is much faster than the method of examining the N one by one, 
seriatim. And if N becomes very large, the method of selecting 
among groups becomes almost incomparably faster. Lack of 
space prohibits an adequate treatment of this important subject, 
but it should not be left until I have given an example to show 
something of how enormously faster the dichotomising method is. 

Let us consider a really big selection. Suppose that, somewhere in 
the universe (as visible to the astronomer) there is a unique atom; the 
selector wants to find it. The visible universe contains about 
100,000000 galaxies, each of which contains about 100000,000000 
suns and their systems; each solar system contains about 300000 
bodies like the earth, and the earth contains about 1,000000,000000 
cubic miles. A cubic mile contains about 1000,000000,000000,000000 
dust particles, each of which contains about 10000,000000,000000 
atoms. He wants to find a particular one! 

Let us take this as a unit of very large-scale selection, and call 
it 1 mega-pick; it is about 1 from 1073 • How long will the finding 
of the particular atom take? 

Two methods are worth comparing. By the first, the atoms are 
examined one at a time, and a high-speed electronic tester is used to 
examine a million in each second. Simple calculation shows that the 
number of centuries it would take to find the atom would require 
more than the width of this page to write down. Thus, following this 
method dooms the selection to failure (for all practical purposes). 

In the second method he uses (assuming it possible) the method 
of dichotomy, asking first: is the atom in this half or that? Then, 
taking what is indicated, is it in this half or that?. And so on. Sup
pose this could be done only at one step in each second. How long 
would this method take ? The answer is: just over four minutes! 
With this method, success has become possible. 

This illustration may help to give conviction to the statement 
that the method of selection by groups is very much faster than the 
method of searching item by item. Further, it is precisely when the 
time of searching item by item becomes excessively long that the 
method of searching by groups really shows its power of keeping 
the time short. 

13/21. Selection and reducibility. What does this mean when a 
particular machine is to be selected ? Suppose, for definiteness 
that it has 50 inputs, that each input can take any one of25 values, 
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and that a particular one of the possible forms is sought. This 
selection is just about I megapick, and we know that the attempt 
to select seriatim is hopeless. Can the selection be made by 
groups? We can if there can be found some practical way of 
grouping the input-states. 

A particular case, of great practical importance, occurs when 
the whole machine is reducible (S.4/14) and when the inputs go 
separately to the various sub-systems. Then the sequence: select 
the right value for part 1, on part 1 's input; select the right value 
for part 2, on part 2's input; and so on-corresponds to the selec
tion being conducted by groups, by the fast method. Thus, if the 
machine is reducible the fast method of selection can be used. 

In fact, reducibility is extremely common in our terrestrial sys
tems. It is so common that we usually take it for granted, but he 
who would learn how to regulate the very large system must 
become fully aware of it. 

To get some idea of how much the world we live in shows 
reducibility, compare its ordinary behaviour with what would 
happen if, suddenly, the reducibility were lost, i.e. if every varia
ble had an effect, immediate or delayed, on every other variable. 
The turning over of a page of this book, instead of being just that 
and nothing more, might cause the lights to change, the table to 
start moving, the clock to change its rate, and so on throughout the 
room. Were the world really to be irreducible, regulation would 
be so difficult as to be impossible, and no organised form of life 
could persist (S. 7 /17). 

The subject must be left now, but what was said in Design ... on 
"Iterated systems", and in the chapters that followed, expands the 
thesis. Meanwhile we can draw the conclusion that if a responsi
ble entity Q (S.13/1 0) is to design (i.e. select) a machine to act as 
regulator to a very large system, so that the regulator itself is 
somewhat large, the achieving of the necessary selection within a 
reasonably short time is likely to depend much on whether the 
regulator can be made in reducible form. 

13/22. Whence the Regulator? Now at last we can answer the 
question that has been latent throughout Part III: how is the 
desired regulator to be brought into being? The question was 
raised in S.13/1 0, but since then we have explored a variety of top
ics, which had to be discussed before the threads could be pulled 
together. Let us now survey the position. 

The process of arriving eventually at a particular machine with 
desired properties implies selection, and it also implies that the 
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responsible entity Q (of S.l3/l 0) has worked successfully to a 
goal With whatever variety the components were initially availa
ble, an with whatever variety the designs (i.e. input values) might 
have varied from the final appropriate form, the maker Q acted in 
relation to the goal so as to achieve it. He therefore acted as a reg
ulator. Thus the making of a machine of desired properties (in the 
sense of getting it rather than one with undesired properties) is an 
act of regulation. 

Suppose now that this machine of desired properties is the reg
ulator discussed throughout Part III-how is it to be made The 
answer is inescapable: by another regulator. 

Is this a reduction ad absurdum of our whole position? I thin 
not. For the obvious question "where does it all start?" is readily 
answered. As biologists, our fundamental fact (S.l 0/3) is that the 
earth has now existed for a long time, that selection has acted 
throughout this time, and that selection favours the appearance c 
regulators (S.l0/5). These facts alone are sufficient to account for 
the presence on the earth today of many good regulators. And n~ 
further explanation is necessary if it should be found that some o 
these regulators have as goal the bringing of some mechanism to 
standard form, even if the standard form is that of a regulator 
(with goal, of course, distinct from that of the first). The scientist 
would merely be mildly curious as to why something that could 
be done directly, in one stage, is actually done indirectly, in two. 

We can thus answer this section's question by saying that a reg
ulator can be selected from some general set of mechanisms (man, 
non- regulatory) only by being either the survivor of some process 
of natural selection or by being made (another process of selection 
by another regulator. 

13/23. Is not this making of the desired regulator by two stages 
wasteful? That it should be arrived at in two stages suggests that 
the problem of getting a regulator always has to be solved before 
it can be tackled! 

Again, what does this imply when the very large system to be 
regulated is the social and economic world and the responsible 
entity Q is some set, of sociologists perhaps, whose capacity, as a 
regulator, is limited to that available to the members of the species 
Homo? Does this imply that no advance in regulation is possible 
(for the regulator will have to be built by members of the species)? 

It does not; for when regulation is achieved in stages-when a 
regulator R1 acts so as to bring into existence a regulator R2_the 
capacity ofR2 is not bounded by that ofR1. The possibility arises 
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that R2 may be of capacity greater than R 1 so that an amplification 
occurs. This possibility is studied in the 'next chapter, where we 
shall see that, apart from being necessarily wasteful, the method 
of regulation by stages opens up some remarkable possibilities. 
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Chapter 14 

AMPLIFYING REGULATION 

14/1. What is an amplifier? An amplifier, in general, is a device 
that, if given a little of something, will emit a lot of it. A sound 
amplifier, if given a little sound (into a microphone) will emit a 
lot of sound. A power-amplifier, such as the one described in 
S.12/21, if given a little power (enough to move L) will emit a lot 
of power (from H). And a money-amplifier would be a device 
that, if given a little money, would emit a lot. 

Such devices work by having available a generous reservoir of 
what is to be emitted, and then using the input to act as controller 
to the flow from the reservoir. Rarely an amplifier acts by directly 
magnifying the input, as does the cine-projectionist's lens; but 
more commonly it works by supplementation. Thus the 
power-amplifier has some source that will provide power abun
dantly (the compressed air at A in Fig. 12/2111 ), and it is this 
source that provides most of the power in the output, the input 
contributing little or nothing towards the output. Similarly, the 
work performed by the cranedriver on the control-handle does 
nothing directly towards lifting the main weight, for the whole of 
his work is expended in moving electrical or other switch gear. 

It will be seen that in the power amplifier (e.g. that of Fig. 12/21/ 
1) the whole process-that of lifting a heavy weight at H, by a 
force at L-goes in two stages, by two coupled systems. It is this 
separation into two stages that makes power-amplification possi
ble, for otherwise, i.e. in one stage, the law of conservation of 
energy would make any simple and direct amplification of power 
impossible. Stage 1 consists of the movement, by the operator, of 
the point L against the friction at K and the pressure at V; over this 
stage energy, or power, is conserved strictly. Stage 2 consists of the 
movement of compressed air into or out ofB and the lifting ofP, 
G and H; over this stage, also, energy is conserved; for the energy 
used when the weight at His lifted is derived from the expansion 
of the compressed air. Thus the whole system can be regarded as 
composed of two systems, within each of which energy is con-
served strictly, and so coupled that forces of 0, 1, 2 ... dynes at L 
correspond respectively to forces of 0, 1000, 2000, ... dynes (or 
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some other multiple) at H It is the division into two stages that 
enables a power-amplifier to be built in spite of the law of conser
vation of energy, the point being that the energy supplied to the 
input in stage I can be supplemented to give the output in stage 2. 

Sometimes the proportionality is important, as in the radio 
amplifier. Then the machine has to be made so that the ratio has 
the same value all along the scale. In other cases the exact value 
of the ratio is of little importance, as in the crane, the essential 
point in it being that the input values shall all be within some 
given limit (that set by the strength of the crane driver's arm) and 
that the output shall be supplemented generously, so that it much 
exceeds the value of the input. 

Ex.: Design a "water-amplifier", i.e. a device that, if water is pumped into the 
input at x ml/see will emit, from its output, water at I OOx ml/sec. 

14/2. The process of amplification can thus be looked at from two 
very different points of view, which are apt to lead to two very dif
ferent opinions about whether amplification does or does not 
occur. 

On the one side stands the theoretician-a designer of cranes, 
perhaps, who must understand the inner nature of the process if he 
is to make the crane effective. To him there is no real amplifica
tion: the power emitted does not exceed the (total) power sup
plied. He knows that the operator at the control is successful 
simply because the operator can, as it were, rob other sources of 
energy (coal, oil, etc.) to achieve his end. Had Nature not provided 
the coal as a generous source of supplementation, the operator 
would not be able to lift the heavy load. The operator gets "ampli
fication" simply by calling in King Coal to help him. So the basic 
type of amplifier is the boy who can lift big weights-because his 
father is willing to lift them for him! 

All this is true; yet on the other side stands the practical man 
who wants to use the thing, the man who decides what machinery 
to install at the quay-side, say. If he has access to an abundant 
source of cheap power, then for him "amplification" becomes 
very real and practical. It means the difference between the ships 
being loaded quickly and easily by movements of a control han
dle, or slowly and laboriously by hand. When the load is larger, a 
locomotive for instance, the non-availability of a power-amplifier 
might mean that the job could not be done at all. Thus, to the prac
tical man the possibility of such an apparent amplification is of 
great importance. 
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Obviously, both points of view are right. Designers of cranes 
should be well aware that they are not really amplifiers, but the 
users of them should think of them as if they were. 

14/3. We can now see how we should view the question of ampli
fYing regulation. During the designing (in this chapter) we shall 
have to be clearly aware that the designer is really achieving only 
a supplementation, by robbing some easily available and abun
dant source of it. When he comes to use it, however (a matter for 
the future), he should forget the fact, and should know only that 
he is now like a workman equipped with power-operated tools, 
able to achieve tasks impossible to the unaided workman. 

14/4. Regulation and selection. In S.l3/l 0 we started to consider 
what would get the regulator (previously assumed to be given) 
into actual existence, either as a formula for behaving, contained 
within the organism (Q) that wants the regulation, or as a material 
machine built by the organism to act for him. We saw that the 
quantity of design that goes to it can be measured (by the amount 
of selection necessary) and we saw (S.13/18) that selection can, in 
a sense, be amplified. To make the matter clearer, let us consider 
more directly the relation between regulation and selection, espe
cially so far as the quantities of variety or information are con
cerned. If the diagram of immediate effects is 

I Designer I I Regulator I 
c 

we want to know how much variety or information the channel C 
between them will have to carry. 

To get a regulator made, selection is essential. Here are three 
examples: 

The first regulator we discussed (S.ll/3) led to our identifying 
it as 

1 2 3 
R: t f3 a y 

and this particular transformation (the regulatory) had to be 
selected from the set of all transformations possible, which num
bered, in this case, 27 ( cf. Ex. 717 /8). Here the regulator is "made" 
by being unambiguously specified, i.e. distinguished from the 
others. 

In S.l3/12 another method was used, and a machine, which 
might be a regulator, was "designed" by a particular value being 
selected from the set of possible input-values. 
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A third method for getting a regulator made is to assemble it in 
hardware, as a mechanic makes a water bath. Again selection is 
necessary: components have to be selected (distinguished) from 
other possible objects, and the mode of assembling and coupling 
has to be selected from the other, incorrect, modes. The quantity 
of selection used can be measured; and any dispute about the 
measurement can be resolved by the method ofS.l3/11 (final par
agraph). 

It follows from S.13/18 that if the final regulator can be arrived 
at by stages (the whole selection occurring in stages) the possibil
ity exists that the provision of a small regulator at the first stage 
may lead to the final establishment of a much bigger regulator (i.e. 
one of larger capacity) so that the process shows amplification. 

This is the sense in which "amplifying" regulation is to be 
understood. The law of Requisite Variety, like the law of Conser
vation of Energy, absolutely prohibits any direct and simple mag
nification but it does not prohibit supplementation. 

14/5. Let us consider some examples which will actually show 
such amplification of regulation. 

Suppose the disturbances are fluctuations in the mains' voltage, 
which come to an apparatus owned by Qat the rate of hundreds a 
second, and threaten to disturb it. Assume that the variety per sec
ond provided by these disturbances far exceeds his capacity as a 
channel, so it is impossible for him to regulate against them by 
direct personal action. However, he has available a manufac
turer's catalogue, which shows three items: 

1: Television set, 
2: Mains stabiliser, 
3: Frequency changer. 

Assume that it is within his capacity for him to make a suitable 
selection of one from three; if now he performs the appropriate 
selection, the end result will be that the brains' supply to his appa
ratus will become stabilised. Thus his three possible primary 
selections can be put into correspondence with three outcomes, 
one of which is "mains' voltage stabilised". 

The latter regulation (over, say, a year) involves far more selec
tion than of one from three; so over the whole transaction an 
undoubted amplification has occurred. 

In this example the supplementation is so obvious, and his 
dependence on the manufacturer's power as a designer so blatant, 
that the reader may be tempted to dismiss this "amplification" as 
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not worth serious consideration. (It is not, however, more blatant 
than the crane-driver's dependence on a suitable power supply.) 
This case, however, is only somewhat extreme (having been 
selected to show one end of the scale). Other cases lie further 
along the scale, and are of more general interest. The principle, 
however, remains unaltered. 

Next consider the case in which Q wants a water bath to be 
restored to a certain temperature; restorations will be required 100 
times in each day and over a whole year. This means that on 
36,500 occasions the temperature must be corrected by a raising 
or a lowering-a one-bit selection, say. The whole Grand Distur
bance (S.l3/8) thus has variety of 236SOO possibilities. Q proba
bly could transmit this in the year, but finds it inconvenient. If 
then his resources are such that he can make a thermostat at a cost 
of, say, I 000 bits, then by using the fact that the Grand Distur
bance is repetitive (S.l3/9), the act of selecting appropriately from 
1000 bits has as consequence the correct selection from 36,500 
bits. So an amplification of about x 36 (if measured on the loga
rithmic scale) has occurred. 

This second example is more ordinary than the first. The fact 
that its method is widely used in practice shows whether or not the 
practical man thinks it worth while. 

There is, of course, not necessarily any amplification; and the 
practical man, before he builds a machine to do a job, always 
makes at least an intuitive assessment of the balance: 

Cost (in some sense) of making 
the machine which will do the 
job. 

Cost incurred by doing it 
himself. 

What this chapter deals with are the actual quantities involved, 
when our interest is centred on the amount of communication and 
selection that is required. 

Finally let us consider an example in which the possibility of 
amplification is obvious and of practical use. Suppose twenty men 
are given the task of keeping two thousand rooms constant in tem
perature and humidity. If some means of control exists in each 
room, the twenty may yet find the task beyond their capacity if 
they try to compensate for all the atmospheric variations by 
manipulation of the controls directly. It may happen, however, 
that machines are available such that if the men become mechan
ics and act as regulators to the machines, the machines can be 
made into air-conditioners and maintained as such. And it may 
further happen that the amount of regulation that the mechanics 
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can supply to the conditioners is sufficient to keep the condition
ers effectively in control of the two thousand rooms. Thus the reg
ulation that could not be done in one stage may, if the conditions 
are suitable, be possible in two. 

The quantities of communication (the channel capacities) 
involved in these regulations could be measured to any desired 
accuracy, and the exact degree of any amplification ascertained. 
Thus if amplification had actually occurred, the reality ofthe fact 
could be demonstrated beyond dispute. 

Whence (in the last example) comes the supplementation? In 
general, from whatever supplies the other inputs. In the example 
just given, these include the other factors that contributed to the 
machines' design and manufacture, and also the environment 
itself, which communicates to the conditioner, and not to the 
mechanic, what is the temperature and humidity at each moment. 
As a result, these sources of information play a part in the total 
regulation, without using the mechanic as a channel. 

The example just given shows two levels of regulation, but there 
is no reason why the number should stop at two. A doctor who 
looks after the set of mechanics and keeps them healthy and able 
to work might claim, so far as the rooms were concerned, to be a 
regulator at the third level. The matter need not be pursued further 
once the principle is clear, especially since many cases will proba
bly not show the various regulators arranged in a simple hierarchy. 

14/6. Amplification in the brain. We can now understand quanti
tatively why this indirect method has proved superior-why it is 
the method used by those organisms that have the most powerful 
resources for regulation-it allows amplification. 

The gene-pattern, as a store or channel for variety, has limited 
capacity. Survival goes especially to those species that use the 
capacity efficiently. It can be used directly or indirectly. 

The direct use occurs when the gene-pattern is used directly to 
specify the regulator. The regulator is made (in the embryo) and 
the organism passes its life responding to each disturbance as the 
gene-pattern has determined. Amplification does not occur (from 
our present point of view, though some advantage is gained (S.l3/ 
9) if the disturbances recur frequently in the organism's lifetime). 

The indirect use occurs when the gene-pattern builds a regulator 
(R1) whose action is to build the main regulator (R2), especially if 
this process is raised through several orders or levels. By achiev
ing the ultimate regulation through stages, the possibility of 
large-scale supplementation occurs, and thus the possibility of an 
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ultimate regulation far greater than could be achieved by the 
gene-pattern directly. 

A clear example of how one regulator can act so as to cause the 
development of another occurred in S.l2/15. Part B of the home
ostat was built and thus became the primary regulator Rl. Coupled 
to Part A, it acts so as to cause A to become stable with its needles 
at the centre. When this is achieved, A acts as a regulator (R2) 

towards disturbances coming to it that would make the needles 
diverge. Though the R2 of this particular example is extremely 
simple, nothing in principle separates this case from those in 
which the regulator R2 is of any degree of complexity. 

The method of achieving regulation in two stages, by which the 
gene- pattern makes R1, and Rl makes R2, is the method of the 
mammals, whose gene-pattern is used, in its action on the embryo 
brain, to determine the development at birth of some fundamental 
regulators (RD whose action is not immediately to the organism's 
advantage. From birth onwards, however, they act towards the 
cerebral cortex so as to develop in it a vast regulatory mechanism 
(R2) that, by the time adulthood arrives, is a much better regulator 
(i.e. of larger capacity) than could have been produced by the 
action of the gene-pattern directly. 

Whence comes the supplementation? From random sources as 
in S.l2/15 and from the environment itself! For it is the environ
ment that is forced to provide much of the determination about 
how the organism shall act. Thus gene-pattern and environment 
both contribute to the shaping of the fully developed adult, and in 
this way the quantity of design supplied by the gene-pattern is 
supplemented by design (as variety and information) coming 
from the environment. Thus the adult eventually shows more reg
ulatory capacity than could have been determined by the 
gene-pattern alone. The amplification of regulation is thus no new 
thing, for the higher animals, those that adapt by learning, discov
ered the method long ago. 

May it not be possible that the amplification can be increased 
even further? If so, is there not a possibility that we can use our 
present powers of regulation to form a more highly developed 
regulator, of much more than human capacity, that can regulate 
the various ills that occur in society, which, in relation to us, is a 
very large system? 

14/7. AmplifYing intelligence. This book is intended to be an 
Introduction, and for twelve chapters it has kept to its purpose. 
The last two chapters, however, have developed the subject some-
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what speculatively, partly to give the reader practice in applying 
the earlier methods, and partly to show what lies ahead, for the 
prospects are exciting. 

In S.13/18 we saw that selection can be amplified. Now "prob
lem solving" is largely, perhaps entirely, a matter of appropriate 
selection. Take, for instance, any popular book of problems and 
puzzles. Almost every one can be reduced to the form: out of a 
certain set, indicate one element. Thus of all possible numbers of 
apples that John might have in his sack we are asked to find a cer
tain one; or of all possible pencil lines drawn through a given pat
tern of dots, a certain one is wanted; or of all possible distributions 
of letters into a given set of spaces, a certain one is wanted. It is, 
in fact, difficult to think of a problem, either playful or serious, 
that does not ultimately require an appropriate selection as neces
sary and sufficient for its solution. 

It is also clear that many of the tests used for measuring "intel
ligence" are scored essentially according to the candidate's power 
of appropriate selection. Thus one test shows the child a common 
object and asks its name: out of all words the child must select the 
proper one. Another test asks the child how it would find a ball in 
a field: out of all the possible paths the child must select one of the 
suitable few. Thus it is not impossible that what is commonly 
referred to as "intellectual power" may be equivalent to "power of 
appropriate selection". Indeed, if a talking Black Box were to 
show high power of appropriate selection in such matters-so 
that, when given difficult problems it persistently gave correct 
answers-we could hardly deny that it was showing the behavio
ral equivalent of "high intelligence". 

If this is so, and as we know that power of selection can be 
amplified, it seems to follow that intellectual power, like physical 
power, can be amplified. Let no one say that it cannot be done, for 
the gene-patterns do it every time they form a brain that grows up 
to be something better than the gene-pattern could have specified 
in detail. What is new is that we can now do it synthetically, con
sciously, deliberately. 

But this book must stop; these are not matters for an Introduction. 
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ANSWERS TO THE EXERCISES 

2/4. 1: No. 2: No. 3: A, yes; B, yes; C, no; D, yes. 4: It must be of tho 
form a~ a. S: Yes; a position with a player mated can have no 
transform, for no further legal move exists; if C's transformation is 
closed, every position his move creates can be followed by another so 
his transformation can contain no mating moves. ' 

2/5. 1: Yes. 2: No; some operands, e.g. 40, end in 0 and will transform to 
0, which is not in the set of operands. 

2/6. 1: n' = n + 10 (n = 1, 2, 3). 2: a, n' = 7n (n = 1, 2, 3, understood for 
all);b,n' = n2;c,n' = 1/n;d,n' = 11- n;e,n' = 1;f,n' = n. 

3 1 5 6 7 N 4 (') 1 5 6 7 (") 1 -1 0 1 
: ... 2 3 4 o. : 1 ... 25 30 35 u ... 2 0 2 

5: Yes. 6: Yes. 
2/8. 1: Many-one; both 1 and 8 are changed to 9. 

2/9. 1: No Sale. 2: Maiden over. 

2/10. 1: The main diagonal consists exclusively of 1 's, and the rest are all 
zeros. 2: a: ii; b: iii; c: i. 3: a: Yes; b: No. 4: The distributions are 
the same, the one being merely a reflection of the other. 6: 16. 7: 4. 

2/11. 

2/14. 

1: A2: .j. a b c 2: The same as the transformation. 3: A. 4: 
. a a c 

n' == n + 2 (n = 1, 2, ... ). S: n' = 49n (n = 1, 2, ... ). 

6:.j.m0 0 
0 0 0 
0 + + 

1: n" = 9n. 2: a"= a+ 16. 3: a"'= 343a. 4: k" = 9k- 4. 
S: m" =log (log m). 6: p" = p4. 7: (i) n' = 4n + 9; (ii) n' = n4 
+ 2n3 + 2n2 + n; (iii) n' = 1 + 2 log(l + 2logn). 8: n' = -27n 

' 1 + n 2 + n 3 + 2n 5 + 3n 10: The identity. 
- 7• 9 : n = 2 + n' 3 + 2n '5 + 3n' 8 + 5n,' etc. 

12: The limit is at <t. t). 
I 6 7 8 3: h: 1 a fJ 'Y 8 4: 17. S: 0. 6: 9n. 2/15. 1: 2, 3, 1. 2: g: '+' 8 7 8 '+' 'Y 3 fJ a 

7: t. 

abed •. 1 abcd 
2/16. 1: U2T; .j. d c b d 2. UTU. '+' c d c b 

3: They are identical; this equivalence is the chief justification for writing 
the transformation downwards rather than from left to right. (Cf. 
Ex. 9/6/8 and 12/8/4.) 
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c 

2/17. 1:(i) .j. (ii)f~gp~q. 2: It contains no arrows, just 
b~a~d 

isolated points. 3: Each is composed solely of isolated points and/or 
simple rings without branches. 
4: 9~2 5~6 

t .j. 
4 ~ 0 ~ 1 ~ 7 ~ 8 if 4-figure logs are used 

t 
3 

5: 7, 1, 2, 2. 6: No. 7: Yes. 9: No. 
3/1. 1: Possible answers are: (a) soft-boiled egg~ hard-boiled; (b) log~ 

ash; (c) cylinder full of vapour and air~ full of flame; (d) unicellular 
ovum~ two-celled; (e) cumulus cloud~ thunder storm; (f) oestrus~ 
pregnancy; (g) low price (with short supply)~ high price; (h) cat 
seeing mouse~ cat chasing mouse; (i) nebulae close~ nebulae 
dispersed. 

3/4. 1: n' = 2n. 2:2, 4, 8, I6, 32, 64 x I03. 3: Graph (ii): 1000 ~ 2000 ~ 
4000 ~... 4: n' = 0·8n. 5: (i) 800, 640, 510, 410, 330 X 106; 
(ii) Zero. 6: It would run to state 3 at which it remains; 3 is the only 
state it can stop at. 7: It runs to a cycle of states 2 and 8, between which 
it oscillates incessantly. 8: Four; two with a state of equilibrium and 
two with a cycle. 9: n' = 0·9n + I,OOO,OOO. 10: 20, I9, I8·I, I7·3, 
x .I06. 1l: IO,OOO,OOO. 12: If I is its length, its change of length over 
one interval of time is /' - I; so/' - I = 1·2, and the transformation is 
/'=I+ I·2. 13: The increase in number (not the next number) 
is n'- n; so n' - n = IO-Sn(108 - n), and the transformation is 
n' = n + 10-8n(108 - n). 14: I9, 34, 57, 81, 97 X I06. 

1: .j. ~~~~~ ~~~~~ ~~~~j 
2: (ABC) 

,71 \,. 
(CAB) ~ (BCA) 

3: (1,-I), (l,I), (-1,1), (-1,-1). 4: A cycle of four elements. 
5: (2,3,5), (3,5,8), (5,8,13). 

3/6. 1: (-!,2), (2,-t), (-t,-2), (-2,-!), (-!,2), etc. 2: (I,2,0,2,2,). 
3:(2,I,0,2,2,) ~ (1,2,0,2,2,). 4: Further cycles of two elements each, 
and not connected, would be added. 5: (8,-3,I). 6: (8,4) transforms 
to (6,6), at which the system remains. 7: If the operand is (a,b), 
a'= ta + tb, b' = ta +-!b. 8: (30,34)~(28,36)~(24,40)~(I6,48) 
~ (0,64) ~ ? What happens next cannot be decided until the per· 
missibility of borrowing is decided. 9: a'= !(3a- b), b' = -!(3b- a). 
10: Whoever started with most money. 11: m' = m- n, n' = 1n. 
12: The vector (m,n). 13: (150,10) ~ (140,20) ~ ... ~ (0,160), after 
which the algebraic events no longer parallel the zoological. 14: x = 10, 
0, -5, -5, -2-!, 0, It, It, i; no. 15: It is heavily damped. 16: If 
wages are represented by x, and the price index by y, then the first 
statement says that x' - x = y - 100, and the second says that 
y' = x; so the transformation is x' = x + y - IOO, y' = x. 
17: (110,I10) ~ (120,I10) ~ (130,120) ~ ... ~1540,990). 18: No, the 
system is caught in a "vicious spiral". 19: (110,110) ~ (110,100) 
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-+ ..• -+ (1QO-h,1oo-fcr). 20: Each is converging to 100. 21: One 
system is stable; the other shows self-aggravating inflation. 22: 
(80,120)-+ (100,80)-+ (90,110)-+ ... -+ (99i,lOOt). 24: Yes. 25: 3, 

d3x d2x dx 
3/7. 1: dt3 - dt2 - 2x dt + x2 = 0. 

2: dxfdt = y, dyfdt = - ax. 
dx dy y 2 

3: dt = y, dt = <1 - x 2)x x(l + x2)" 

4/1. 1: Three. 2: Yes. 3: Under Rt it goes c-+d-+b; then under R2 it 
goes b-+ a-+ b; so it is at b. 4: (i) Rt and then Rz would do; (ii) R~t 
R3, Rz would do. 5: It would become x' = 4, y' = 4 - y; notice that 
the equation of the first line, belonging to x, is made actually untrue; 
the fixing forces the machine to behave differently. 6: Within each 
column the states must be the same. 

4/2. 1: (i) g' = 2g- 2h, h' = 2g- 2h; (ii) g' = g- h, h' = 2g; (iii) g' = 0, 
h' = 2g + 2h. 2: (i) h' = j, j' = e-h; (ii) h' = log (2 + sin h), 
j' = 1 + sinj. 3: (i) 0; (ii) 2; (iii) alternately 1 and 2; (iv) a = 1 for 
90 steps and then a= 10. 5: PV = 10; yes, approximately. 6: 
n' = n + az. 7: Yes; each jump is n'- n, and this measures 3a. 

4/3. 1: ab = 00 01 10 11 20 21 
s' = s s 0 -s -s+2t 
t' = t 2t t-1 2t t-2 2t 

2: 3. 3: a = 9/8, b = 1/8. 4: a = 9/10, b = - 1/10. 5: Four 
(ab = 0, 1, 2 or 4). 

4/4. 1: Putting a and b always equal, i.e. making the transducer effectively 
p' = a(p + q), q' = a(p + q). 

4/5. 1: The graph must consist of a single chain that passes through all 
states. 2: The sequence (8,4), (6,6). 

4/7. 1 and 2: (omitting brackets) four basins: 

4/8. 

4/9. 
4/11. 

ai+t bk dj-+ bi +tak 
aj-+ di +t ck 

t 
cj 

bj-+ ci +t dk 

3: ai-+ ck-+ di-+ bk-+ ci-+ dk +t bi. 4: Yes. 5: ntnz. 6: n3 

7: Each part in succession goes to state 0. 8: The change 
... 0,0,1,2,0,0, ... occurs in each part in turn, somewhat as an impulse 
passes along a nerve. 
1: ce 

+ 
ae-+df+tbf 

t 
af-+ cf +- be+- de 

1: p,q; r,s,t,u. 2: (1,0,1,0,0). 

3: In X put all the values of fJ 
the same. 

1: Between six pairs, such as AB, there are 6; around four triples, such 
as ABC, taken in either direction, there are 8; and around all four 
(ABCD, ABDC, ACED, ACDB, ADBC, ADCB), there are ~· ~: 
x' = y + z2, y' = 2z, z' = x - z. 3: Yes; the other transformation ts 
x' = y + z, y' = 2z, z' = x- I. 4: Yes. 
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4/12. 1: (with boxes omitted for simplicity): (i) y-+ x; y dominates x; 
(ii) y a system with feedback; 

i/'\ 
X-+Z 

(iii) u ~ x v ~ y; the "whole" actually consists of two unconnected 
parts; (iv) u-+ x-+ y-+ z; a chain of action; 

u 
J'f 

(v) y-+ x; y dominates all the other three; 

"' 
u 

"' 
z 

(vi) x-+ z; z is dominated by the other three. 2: When y is zero. 
J'f 

y 
4/13. 1: z dominates x, y is independent of both. 
4/14. 1: (iii) only. 
4/15. 1: If the variables are S = Singing, L = Laughter; X = Organ

playing, Y = Incense-burning, and each take the values 0 or 1 for 
inactive or active respectively, then the machine with input is soon 
found to be 

(S,L) 
.j. 00 01 10 11 

00 01 01 10 10 
(X,Y) 01 00 00 11 11 

10 11 01 00 10 
11 10 00 01 11 

One way to (0,0) is: Stop the incense burning for one minute; next stop 
the incense and play the organ; finally, start burning the incense again; 
in future keep it burning and never play the organ. 2: Yes, for the L's 
transitions are affected by S's values. 3: No. 4: X-+ S ~L+- Y. 

4/19. 1: A possible method is roll a die and let its first number give the trans
form of S1. and so on. 2: A possible method is to number six cards 
from 1 to 6, shuffle them, deal in a row, and then fill in the states in the 
same order. 5: See S.4/20. 

4/20. 1: Yes, no, no. 
5/3. 2: No. 3: The only one is (0,0). 4: All the points on they-axis are 

equilibria!. 5: j = 0, k = -1. 6: Yes. 7: No. 8: Every arrow 
returns to its state of origin, so the representative point is immobile. 
9: Identity. 10: Yes. 11: Yes. 

5/4. 1: Such is t ~ : ~ ~ : ~ ~ 3: No. 4: No. 5: No. 6: Every 

trajectory is a cycle. 7: No. 
5/5. 1: b + c + g only. 2: Yes. 3: Yes. 4: Yes. 
5/6. 1: Yes; the sequence D(c), TD(c), T2D(c), TJD(c), ... is d, a, c, c, .• 

2: No; the limit is not e. 3: The system, though displaced out of th( 
set, always comes back to it. 
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5/7. 1: A possible set of transformations is: 
.j. a b c d 

T a b a b 
D c c 
E b d 

5/9. 1: a= (100,100); D turns it to (110,110)-i.e. St = 10, S2 = 10; Tis 
given; it is not stable. 2: a and Dare as before, but Tis changed, and 
the system is stable. 3: Usually the limit will be some state other than 
a; it is not stable to such D's. 4: Yes; the deviations tend to zero, 
which is a state of equilibrium. 5: No; the deviations increase to a 
degree limited only by extraneous factors such as the shape of the 
couplings. 6: To make any deviation wane rather than wax. 7: It 
is self-aggravating-a perpetual headache to route managers. 8: Any 
displacement from the state of equilibrium would increase until some 
other limiting factor came in. 9: Yes; for all displacements D; thus 
if D displaces the state to (St. S2), then x's successive values are ll~o 
!S2, !S1. H2, .•. which obviously converges to 0; similarly for y. 

5/13. 1: No; for y would have to be in equilibrium at 0 under some value of 
{3; thus {3 would have to satisfy 0 = 2{10 + 3, which is impossible. 

6/3. 1: See S.6/5. 

6/5. 

6/7. 

6/9. 

1: g) j ~f. 2: j ~ f ~ h (the protocol gives no evidence about 
h 

transitions from g with input at {1). 3: No, the transition from C is 
not single-valued. 4: Yes, so far as the evidence goes. 
5: (x,y) .j. 00 01 02 10 11 12 20 21 22 

(x',y') 01 00 11 11 00 21 11 20 11 
6: For each input value, n transitions have to be observed, taking at 
least n steps; so the whole set of transformations cannot be observed in 
fewer than mn steps. 7: Select any two values for x and a, and find 
what value of x' ensues. Thus "a= I, x = 4, and x' = 4" shows the 
Box to be I. An even simpler test is to set a = 0 and see whether x 
increases or decreases in value. 
1: y dominates x. 

1: .j. a b c d e 2: Six. 
t p r q s 

3: Two variables are necessary, the dial reading (v) and its rate of change 
(v); dv/dt = v, dvfdt = k(u- v)- fv, where k represents the strength 
of the spring and moment of inertia of the mass, and f is the coefficient 
of friction; (ii) dyfdt = y, dyfdt = -RyfL- yfCL + x. To be 
isomorphic in the strict sense defined above, they must have f = R/L 
and k = 1/CL. If this is so they can be shown isomorphic by the one
one transformation 

t y 
v 

4: + u v w 
Z X y 

y 
v 

X 

ku 

6/10. 1: They are identical: p ~ q ---'; r. 2: ii and iv may be changed; i, iii, and 
v unchanged. 3: All are unchanged. 
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6/11. 1: Think of x as the price of butter and y as the price of sugar; their 

difference now is x - y; tomorrow's difference is (x - y)'; and this is 
the same as tomorrow's price of butter less tomorrow's price of sugar, 
x' -y'. 

6/12. 1: It is if the one-one transformation is regarded as simply an extreme 
case of the many-one. 

6/13. 1: Even + Even =Even, E + 0 = 0, 0 + E = 0, 0 + 0 =E. 
2: (Let "x + y" mean "merge x andy"). The systems are: (i) a+ b, 
(ii) c + d, (iii) a + b and c + d, (iv) b + c + d, (v) a + b + c + d, and 
(vi) (ex officio) the original system with none merged. 3: The states 
(x,y) and ( -x,y) can be merged, for the 'change of x's sign does not 
alter the next state (x',y'); thus, to be told only that the present state is 
(±4,-2), without specification of x's sign, is still sufficient to show that 
the next state must be the single one of ( +2,+14). 

6/16. 1: System and model would be indistinguishable. 2: It persists, so 
does the brain; they are isomorphic at the lowest level. 3: (i) a,b+c+d 
is isomorphic with p,q+r; (ii) a+b+c+d is isomorphic withp + q + r. 

7/6. 1: 26 X 26 X 26, which is 17,576. 2: 16. 3: 11. 4: 2 X 2 X 2 ... 
ten times, i.e. 1024. 5: 5"' must be not less than 2 x 109 so, taking 
logs to any convenient base (10 will do): 

x log 5 >log 2 + 9log 10 
. ·. x > (log 2 + 9 log 10)/log 5 

> 13·3; 
so at least 14 such tests would be necessary. 6: (i) 27, (ii) 21. 7: 27. 
8: 33 = 27 and 34 = 81; so, to select one from 52,[9ur indications would 
be necessary. 9: Three; the father's group can be' A, B or 0. 

7/7. 1: One bit. 2: (i) 2·32 bits, (ii) 30·9 bits. 3: 4·7 bits. 4: 5 X 4·7 = 
23·5 bits. 5: (i) 1 bit, (ii) 20 bits. 6: 220, i.e. 1,048576. 7: The re
placement of each question mark has variety of log26 bits, so the whole 
has variety of 6 log2 6 bits, i.e. 15·5 bits. 8: n log2 n bits. 9: 12000 
bits. 10: A page of 5000 words would carry about 50,000 bits-more 
than the record. 11: Other things being equal the varieties must be 
equal. 12: That of "all possible pamphlets that are printed in English 
and that take ten minutes in the reading". The variety belongs not to 
the pamphlet but to this set. 13: Certainly; it has only to be distinct 
from the other possibilities. 

7/12. 1: No, for all combinations of past marital state and present marital 
state are included. 2: Yes; four possibilities are missing. 

7/13. 1: Three, so far as the quantities mentioned are concerned. 2: Yes, 
if the hands are accurately set; thus the hour-hand being midway 
between two numbers implies that the minute-hand is at the "half-past". 
3: One; for the information given by the minute hand is implied by that 
given by the hour-hand. 4: The chameleon's have four; Man has a 
little more than two, for his eyes can move with slight independence. 
5: Two. 6: One, for its variety cannot exceed that of a; it would still 
be 1 however many components the vector had. 7: Before the graph 
is given, y might, for given x, have any value over y's range; but after 
the graph is drawn y's value, for given x, is limited to some one value. 
8: Six. 
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7/15. 

ANSWERS TO THE EXERCISES 

1: It says that of all the possible rational numbers (infinite in number) 
the combining proportions will always be found in a small subset 
(numbering perhaps a few dozen). 2: Of all geometrically possible 
trajectories, and all possible beat changes, etc., it allows only a few. 

7/19. 1: Of the transitions (e.g.) a- a, a- b, a- c, etc. all are excluded but 
one, for the transition from a must be single-valued; similarly from b, etc. 

7/20. 1: 8. 2: 17. 3: 12. 4: (i) 1,048,576; (ii) 21,892. 

7/22. 2: The parasites'; evidently some hosts are food to more than one 
species of parasite. 3: Vis many-one, and causes a fall. 4: As lackina 
in discrimination. 5: (i) 6 states, (ii) 2 states. "The bath is out of 
order". 6: The chance that a particular state S1 will be tbe'transform 
of a particular state S1 is 1/n. The chance that S1 will not be the trans
form of sl is 1 - 1/n. The chance that s, will not be the transform 
of Sk will also be 1 - 1/n. So the chance that S1 will not be the 
transform of any state is (1 - 1/n)n. This gives the fraction of the 
operands that disappear after the transformation. As n tends to in
finity it tends to 1/e. So the fraction that remains, to give the variety, 
is 1 - 1/e. 

7/24. 1: 3 states, = 1·58 bits. 2: By another 1·58 bits. 3: "a and b" 
becomes, in succession, 5a, 5a + 7, lOa + 14, lOa + b + 14. If 14 
is subtracted, lOa+ b is left. Thus the hundred combinations of a 
and b (if 0 and 0 is allowed) is transformed one-one, after subtraction 
of 14, to the hundred numbers from 0 to 99. The variety is 100 states 
or ~·64 bits. 4: All the two-number combinations that are suggested 
on such occasions. 5: Zero. 6: 2 states, 1 bit; either various circuits 
or one circuit at various times. 7: No. They may be going together 
round the same cycle. Distinguish between (i) equality of state between 
machine and machine considered at one instant, and (ii) equality of 
state between time and time considered in one machine. 

8/3. 1: By no more than one cut can do. 
8/4. 1: Yes; "taking the antilog". 2: No; the same value for x' is given 

by many values of x. 3: The identical transformation. 4: n' = n- 7. 
5: x' = x- y, y' = - x + 2y. 6: 3 log2 26 bits, i.e. 14·1 bits. 7: 
263 = 17576. 8: log2 8 + log2 7, i.e. 5·8 bits. 9: Not quite: the 
variety would be 5·7 bits, which is insufficient (log2 52< log2 56). 
10: 1 bit; the messages are "courting" and "not-courting", and there 
are two of them. The complexities of molecule and ritual are irrelevant 
here. 

8/5. 1: AACBDDBCBCCB. 2: acdbdcd. 3: bdcdbad. 4: 
Yes. 5: 10, 8, 7,10, 11, 9, 8. 6: 10, 8, 4, 3, -1, -1, 3, 0, 1, 1, -1, ..• 
7: x = 2, 1, 2, -11, 11, -2, 16, ... andy= 1, 4, -11, 13, -24, 
-13, -93, . . • • 8: x = exp ( -4t - sin t). 9: x = t(e-1 + te-• 
-cost). 10: x chases a, and follows it closer and closer. 

8/6. 1: No; in the table of transformations there must be 108 rows, so each 
column must have 108 elements; as only 100 are available, there must 
be repetitions. 2: (i) 7, (ii) 512. 3: Fitting some device such as a 
speedometer or tachometer that emits a number proportional to the 
time-derivative. 4: No; for if the output is steady at zero (as will 
happen if it is started at zero) a's values cannot be deduced from x's 
transitions, which are 0 - 0 for all a. 

?Rn 



ANSWERS TO THE EXERCISES GJG 

8/7. l: It does not maintain all distinctions; a perfect inverter is fundamen
tally impossible with it. 
2: (b,B) R R R 

(b,C) S S S 
(b,D) (will not occur) 
(c,A) S S S 
(c,B) R R R 
(c,C) (will not occur) 
(c,D) Q Q Q 
(d,A) (will not occur) 
(d,B) Q Q Q 
(d,C) R R R 
(d,D) S S S 

3: It must have diagram of immediate effects u-+ x-+ y, with y 
emitting u's values two steps later. x may be of the form 

~ Xt xz X3 

Ut Xt Xt Xt 

uz xz xz xz 
U3 XJ XJ X3 

etc. 

If now y has the form 
,!, Ut Uz u3 

Xt Ut Ut Ut 
xz Uz Uz Uz 
X3 U3 U3 u3 

etc. 
then y will emit capital letters corresponding to u's original values. 

If the two (x + y) are regarded as one machine with state (x,y), 
the transformations must be 

,!, (xt.Ut) (xt.Uz) (x1,U3) (xz,Ut) (xz,Uz) (xz,U3) 

ux (xx.Ut) (xx,Ut) xtUt x1U2 
uz (xzUt) xzUt xzUt xzUz 
u3 (x3U1) X3U1 X3U1 X3U2 

etc. etc. 
In general, u1 takes (x1,U") to (x1,U1), which goes, at the next step, to 
(-,U1), thus repeating the original u1• 

8/8. 1: p' = n, m' = cfd; join by putting d = n and c = p. 2: p' = n, 
m' = !{d- c)+ 2; join by putting d = n and c = p. 3: Pt' = x, 
pz' = y, mt' = (ex + ciJ/2dt, mz' = (cz - Ct)/2dz; join by puttinli 
dx = x, dz = y, ex= Pt. cz = pz. 4: The equation cannot be solved 
for a and b separately, or a and b affect the equation only in the com· 
bination a + b or their distinct effects do not appear distinctly in the 
output, and cannot therefore be traced back-these are different way1 
of expressing the same basic idea. Notice that the reason for tht 
impossibility lies not in the lack of suitable gadgetry but in the fact tha1 
the output does not define the input-the necessary information u 
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8/11. 

8/13. 

8/14. 

8/15. 

8/17. 

9/2. 

9/4. 

ANSWERS TO THE EXERCISES 

simply not there. 5: The inverter requires speedometers to give x1 
and x2 as outputs. Then any machine that forms the functions 

XtX2 - X2 - Xt - Xt + X2X2 + XtX2 
at = Xt (x22 - 1) and a2 = x~ - 1 
will emit the original input. If an actual transformation is required, 
then (the functions of .Xt. etc. above being represented by At and A2) 
the transformation a' t = k(At - at). a' 2 = k(A2 - a2) will give tho 
required behaviour as closely as is desired if k is made positive and 
large enough (Ex. 8/5/10). 6: -2 has no particular relation to (7,3), 
whereas 4 has, as the construction of the table showed. 
1: t has 3 states; u has 2. 2: t has 3 states; u cannot have more than 6; 
u actually has 5. 3: T has 2 states; so has U. 4: 3 states. They aro 
(0,0,0,0), (0,0,1,0) and (0,1,0,1). 
1: One bit per step, for r has two states only. 2: The numbers of distinct 
states occupied, at successive states, were: Q: 9,4,3,3,3; R: 1,2,2,2,2; 
S: 1,1,2,3,5. 3: Because the jump from 1 to 4 would have implied a 
gain in variety of 3, whereas R can supply only 2 at most. 
2: The number of balancings cannot, whatever the method, be fewer 
than three. For the variety to be transmitted is log2 27 bits, and the 
transmitter can carry only log2 3 bits per step. 
1: Four; the variety from A takes longest. 2: Four steps; (the answer 
must be the same as to Ex. 1, for the two questions are really identical). 
3: Three; that from y takes longest. 4: Two steps. 
1: A was at (3,2). (Hint: A" was at ( -1,0) and B" was at (1,0).) 
2: Yes; the output enables the sequence of input-vectors to be deduced, 
of which the sequence of first components is the a-message. 3: No; 
Y's movement is simply A's with half the amplitude. 4: If the letters 
a, b, etc. indicate the respective movements of A, B, etc., to right and 
left from suitable zeros, with common scale, then I = !-(a - b), 
n = !(a +b), y = !(I+ n), and z = -!-(-I+ n), from which I and n 
are readily eliminated. "Decoding" corresponds to solving these 
simultaneous equations for a and b, the unknowns, in terms of y and z, 
the knowns. 
1: The transformation so obtained is determinate; how it was obtained 
is irrelevant. 2: Since each state must go to some state, the probabilities, 
and the numbers in each column, must add up to 1. 3: No. 4: 2to, 
i.e. 1024. 5: More than one arrow may leave each point. 
1: The actual transition frequencies are 

1 IA6 :1 
B 17 10 

As each column's probabilities must add to 1, the first column must be 
divided by 23 and the second by 27. The estimated probabilitie& are 
thus 

4: .j. A B 

A 0·2 0·5 
B 0·8 0·5 

+I A B 
A 0·26 0·63 
B 0·74 0·37 

(This is the system that was, in fact, used 
to generate the trajectory in Ex.l.) 
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9/S. 1: Once under a pebble it would stay there. 2.: B must be the paper 
(where the fly sticks), and D the stove (where it never stops). 3: From 
protocol to matrix; the protocol gives a unique matrix, but the matrix 
can give only a set of protocols. Or, if the matrix is lost it can 
be restored from the protocol, but a lost protocol cannot be restored 
from the matrix. 

9/6. 1: (100,0,0), (25,15,0), (62,19,19), (32,61,7), etc., if taken to the nearest 
unit. 3: Face 3 tends to come up, face 4 is tending to go down; there 
fore x = 4. 4: Consider 100 molecules, and let x of the 100 A's be 
dissociated. Ignore the B's. Each A has two possible states, dissociated 
or not, and in each interval of time has the probabilities of staying in its 
state or changing: 

9/7. 

t Dissociated Not Dissociated 

Dissociated 
Not Dissociated 

0·999 
0·001 

0·01 
0·99 

5: If x andy are the numbers dissociated and not, respectively, then for 
equilibrium: 

x = 0·999x + 0·01y 
100 =X +y; 

Therefore, x =90ft. 7: Each insect can be only in one of 3; if there 
are n insects, the number of distinct populations is !(n +2)(n +I). 

1: _:_~ ~ C D 

After C: C 0 5 After D: C 11 7 
Dll6 D 05 

Thus, transitions from C are markedly affected by what preceded the C. 

9/10. 1~ t'1 = :jt1• 2.: No. 3: Yes. 

9/11. 1: The probabilities are (so far as the evidence goes) 0·175 and 0·825; 
so the entropy is 0·67 bits. 2: The probabilities are r.}y, i, U; so the 
entropy is 0·94 bits. 3: 2·6 bits. 4: 5·2 bits. 5: 2·6 x n bits. 6: 0. 

9/12. 2.: It always falls below 1 bit. 

9/13. 

9/16. 

9/17. 

1: The terminal equilibrium is with all in B; and any sequence mus1 
eventually become •.. B B B B • • • • This has no variety, so the 
entropy must be zero. 2.: Entropy is calculated when the whole is a1 
terminal equilibrium and in this case the terminal equilibrium doe! 
not permit the assumption "when it is at A". 

1: Yes, for 62 is fewer than 314; 34 is 81, so four sugars might be sufficien 
if suitably chosen. 2.: Every number in it is the same, e.g. that at th1 
end of 8.9/10. 

2.: It must be at least 2000 bits per min., if the assumptions are correc1 
3: Each finger has variety of loSl 3 in ah min, and 300 logz 3 in 
minute; so all 10, being independent, have 3000 log2 3 bits in on 
minute; so the bound is 4800 bits/min. 4: 5540 symbols/hour. 

9/18. 1: b can follow only a orb, not d; so Xb must be ab; similarly Xc mw 
be ac; and XX must be dX. 
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9/19. 1: (i) ~ t : f , ('') 1 A B C 
11 "'2 1 5 

2: Only if the combinations of a and f3 are restricted to some three of 
the four possible. 

9/20. 1: A distortion, for a second inversion will restore the original without 
loss. 2: A distortion if each tension evokes a distinct frequency. 
3: A corruption, for various tensions evoke the same (zero) output. 

9/21. 1: H 1 is log2,9. H2 is found from: 

10/4. 

10/5. 

11/3. 

11/4. 

Symbol received: 1 2 3 4 5 6 7 8 9 
Probability: t t t t t t t 0 t 
and is 2·948; so the equivocation is 0·222 bits per symbol. 2: Equivo
cation= 0; yes, the new messages are transmitted unambiguously. 
4: 0·00299. 5: The table of events and probabilities is: 

Actual cell: L L M M 
Diagnosis: L M L M 
Probability: 0·9405 0·0095 0·00025 0·04975 

(The probabilities are most simply found by dividing 20,000 cells first 
into 19,000 and 1,000; and then dividing these into cells mis-diagnosed 
and the rest; finally divide by 20,000.) H 1 = 0·365 bits/cell; H2 = 
0·324 bits/cell. So equivocation = 0·041 bits/cell. 

1: .The cat acting on, perhaps playing with, a dead mouse. 2: If such 
were possible, it would correspond to the cat doing something that brings 
a dead mouse back to life! 3: Cis lethal toM if not one of C(M1), 
.•. , C(M") is in M1, ... , Mk. 

(i) Temperature and humidity; (ii) the oxygen in the climber's blood and 
all that depends on it; (iii) the directions ofthe light rays passing through; 
(iv) the illumination of the objects that would otherwise be invisible 
after sunset; (v) the temperature of the food and, consequently, the 
degree of its bacterial contamination; (vi) the intensity of illumination 
of the plant's leaves; (vii) the intensity of illumination of the retina; 
(viii) the. pressure (at high intensities) on the sole; (ix) the contact
pressure, which is kept at zero; (x) the distance between shell and target, 
which is kept zero or small. 

1: + 1 2
11 

3 2: D being given, R should take the value that satisfies 
y a 

37 = R - 2D; so R should take the value 37 + 2D. 3: The main 
diagonal (S.2/10) has the outcomes "skid corrected", the other two 
cells the outcomes "skid exaggerated". 4: Zero-they will all be c's, 
whatever the variety in D's selections. 5: Yes. 

1: Yes. 
2 3 4 5 

2: ~ 1 flora a a aora 
3: R simply plays y on all occasions, without reference to D's move. 
4: Yes, and he should use the transformation 

~ Mr. A Mrs. B 
Sherry Gin 

?R.::I. 

Mr.C 
Sherry 
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1/11. 1 : Yes. D has a variety of 10 bits/sec, the optic nerve can transmit 200 
times this. 2: The capacity available for regulation is 0·63 bits/sec 
by telegraph and 5 ·64 bits/sec by the wheel. So evidently D does not 
usually emit more than 6·3 bits/sec. 3: No, it is grossly insufficient. 
D provides 107 bits in each day, and the variety transmitted to the general 
is at most one-seventeenth of this. 4: No, he can emit only 3 ·6 x J05 
bits/day. 

ll/14. 1: .j. 1 2 3 

a fJ a y 
b a y fJ 
c y fJ a 

2: D is threatening to transmit to Eat 2 bits/sec. To reduce this to 
zero the channel D--)- R must transmit at not less than this rate. 3: 
C--)- E is to carry 20 bits/sec, therefore C--)- R must carry at least that 
amount. 4: R--)- T must carry 2 bits/sec to neutralise D (from Ex. 2), 
and 20 bits/sec from C; as these two are independent (D's values and 
C's not correlated), the capacity must be at least 22 bits/sec. 

12/8. 1: .j. L R 

L 0 0·99 
R 1 0·01 

2: The systems are almost isomorphic; {J, however, will occasionally 
jump from A directly to D, and will occasionally stay at C for a step. 
3: The successive probabilities for a at each step are: 0, i, -1-\ and -H; 
b's probabilities are the remainder. 4: The answer can be found by 
pre-multiplying the column vector[~] by the matrix product prq; com-

pare Ex. 2/16/3 and 12/8/4. 5: The new system must have states that 
are couples, e.g. (b,e); so it will have six states. Now find the transition 
probabilities. What, for instance, is that for the transition (b,e) -)o 

(a,f)? For this to occur, b must go to a, and it must do this while the 
other component is at e, i.e. at {J. With input at fJ the probability of 
b--)- a is 0·9. Similarly, with b (i.e. 3) the probability of e--)-f is 0·3; 
so the probability of the whole transition (for which both independen1 
events must occur) is 0·27. The other probabilities can be found 
similarly, and the matrix is (with brackets omitted for brevity): 

.J.. ae be ce af bf cf 

ae 0·06 0·63 0·25 0·14 0·15 0·12 
be 0·12 0·07 0·25 0·35 0·08 
ce 0·02 0·56 0·20 
af 0·24 0·27 0·25 0·06 0·15 0·18 
bf 0·48 0·03 0·25 0·35 0·12 
cf 0·08 0·24 0·30 

6: Yes. 
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12/10 ANSWERS TO THE EXERCISES 

12/10. 1: A possible matrix is: 
.j, 12345678G 

1 
2 
3 
4 
5 
6 
7 
8 
G 

t 

t 

t 

12/11. 1: G only. 2: "When at a orb it does not seem to know where it is, 
and it wanders at random; cis the only other compartment accessible 
from a orb; if it arrives inc it seems to recognise where it is, for it then 
always goes unswervingly through d and e to f. where it stops-perhaps 
it was always fed there." 

12/12. 1: (i) Yes, (ii) .j, B G 

B - ! 
G - ! There are no transitions after B. 

2: Yes-for my essential variables! 

12/14. 1! y must be the identity; {3 must have no 1 in its main diagonal. 

12/17. 1: (i) 26; (ii) 52 (see Design for a Brain, S.23/2; here p = n). 
12/21. 1: Two; G's position is completely determined by P's, which has one; 

J's angle of rotation gives a second. 2: One way would be to move V 
to mid-way between Land K. 3: One way would be to re-route the 
air-tube so that it comes down to V instead of up to it. 

13/15. 1: 3 Iog2 7, i.e. 8·42 bits. 2: 3 log2 91, i.e. 19·52 bits. 3: 3·3 bits is 
the minimum, for only 10combinations are distinct. 4:1 bit; the number 
of states and other details are irrelevant. That the answer must be 1 
bit can be seen by imagining that these are the only two machines 
possible (as is given), and then imagining that the designer must 
send his instructions by cable; clearly he need not pay much, for 
a simple 1-bit distinction is sufficient for the recipient's instruction. 
5: (i) 49800 bits; (ii) 1·6 bits; no agreement is to be expected, for the 
values refer not to the one stamp but to two different sets of possibilities. 
6: n log2 n bits. 7: in log2 n bits. 

13/17. 1: 19 removed. 2:26 removed. 3: 4·75 bits fell to 3·00, so 1·75 bits 
was removed. 4: As a1 may go to any of n - 1, and a2 similarly, the 
new number of transformations is 

(n - 1)(n - 1) ... (n - I) (n terms), 
i.e. (n - l)n. Logarithmically the variety was n 1og2 n and is now n 
Iog2 (n - 1), so the variety removed by the restriction is 

n log2 n - n log2 (n - 1). 

286 



ANSWERS TO THE EXERCISES 14/1 

. 1 . . (1 1 5: 1·4 bits; more accurate y It Is + 2n + ... ) 1082 e. 6: Examina-

tion of the kth card in a pack of n gives information, or has entropy, 
1 1 n- k n- k 

n - k + 1 log n - k + 1 n - k + 1 log n - k + 1 
if the drawing occurs. If success has occurred earlier the entropy is 0. 
These two events (and their entropies) have probabilities (n - k + 1)/ n 
and (k - 1)/n. So the weighted average entropy is 

1( 1 n-k ) 
-; log n - k + 1 + (n-k) log n - k + 1 

which is ;[en- k + 1) log (n- k + 1)- (n- k) log (n- k)]. 

7: At each drawing the entropy is the same-that of the probabilities 

1 dn- 1 dh ·D · ;; an -n-, an t e average m ormatiOn 

i 
-(n log n - (n - 1) log (n - 1)). 
n 

14/1. 1: An adequate supplementary input of water is, of course, necessary. 
The output comes from this, through a tap, which is controlled by the 
input. A possible method is to use piston or bellows so that the pressure 
set up when 0, 1 or 2 ml/sec are forced through a narrow orifice will 
move the tap to the appropriate position. 
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